A new achievement for ultra-low power logic circuit
Inverter power consumption of $P = 600$ pico-watts
published in Science, Feb. 15, 2019

Printed subthreshold organic transistors operating at high gain and ultralow power
Chen Jiang, Hyung Woo Cheol, Xiang Cheng, Hsiang Ma, David Hasho, and Arabia Nathan

Overcoming the trade-offs among power consumption, fabrication cost, and signal amplification has been a long-standing issue for wearable electronics. We report a high gain, fully inkjet-printed Schottky barrier organic thin film transistor amplifier circuit. The transistor signal amplification efficiency is 28.2 milliwatts per ampere, which is near the theoretical thermionic limit, with an ultralow power consumption of <1 nanowatt. The use of a Schottky barrier for the source gave the transistor geometry-independent electrical characteristics and accommodated the large dimensional variation in inkjet-printed features. These transistors exhibited good reliability with negligible threshold-voltage shift. We demonstrated this capability with an ultralow-power high-gain amplifier for the detection of electrophysiological signals and showed a signal-to-noise ratio of >40 decibels and noise voltage of <0.3 microvolt per hertz at 100 hertz.