
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12. NO. 1 1 , NOVEMBER 1993 1621

An Exact Solution to the Transistor Sizing Problem
for CMOS Circuits Using Convex Optimization

Sachin S. Sapatnekar, Member, IEEE, Vasant B. Rao, Member, IEEE, Pravin M . Vaidya,
and Sung-Mo Kang, Fellow, IEEE

Abstract-A general sequential circuit consists of a number
of combinational stages that lie between latches. For the circuit
to meet a given clocking specification, it is necessary for each
combinational stage to satisfy a certain delay requirement.
Roughly speaking, increasing the sizes of some transistors in a
stage reduces the delay, with the penalty of increased area. The
problem of transistor sizing is to minimize the area of a com-
binational stage, subject to its delay being less than a given
specification. Although this problem has been recognized as a
convex programming problem, most existing approaches do not
take full advantage of this fact, and often give nonoptimal re-
sults. An efficient convex optimization algorithm has been used
here. This algorithm is guaranteed to find the exact solution to
the convex programming problem. We have also improved upon
existing methods for computing the circuit delay as an EImore
time constant, to achieve higher accuracy. CMOS circuit ex-
amples, including a combinational circuit with 832 transistors
are presented to demonstrate the efficacy of the new algorithm.

I. INTRODUCTION
IRCUIT delays in MOS integrated circuits often need C to be reduced to obtain faster response times, with a

minimal area penalty. A typical MOS digital integrated
circuit consists of multiple stages of combinational logic
blocks that lie between latches, clocked by system clock
signals. Delay reduction must ensure that the worst-case
delay of the combinational blocks is such that valid sig-
nals reach a latch before any transition in the signal clock-
ing the latch, with allowances for set-up time require-
ments. In other words, the worst-case delay of each
combinational stage must be restricted to be below a cer-

Manuscript received January 8, 1993. This work was supported in part
by the Joint Services Electronics Program under Contract N00014-90-J-
1270, the Illinois Technology Challenge Grant under Contract SCCA-92-
82122, and the National Science Foundation under Contracts CCR-9057-
481 and CCR-9007-195. This paper was recommended by Associate Editor
R. Bryant.

S . S . Sapatnekar was with the Coordinated Science Laboratory and the
Department of Electrical and Computer Engineering at the University of
Illinois at Urbana-Champaign, Urbana, IL. He is now with the Department
of Electrical Engineering and Computer Engineering, Iowa State Univer-
sity, Ames, IA 5001 1.

V. B. Rao was with the Coordinated Science Laboratory and the De-
partment of Electrical and Computer Engineering at the University of Il -
linois at Urbana-Champaign, Urbana, IL. He is now with IBM E. Fishkill
Facility, Hopewell Junction, NY 12533.

P. M. Vaidya is with the Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801.

S . M. Kang is with the Coordinated Science Laboratory and the Depart-
ment of Electrical and Computer Engineering at the University of Illinois
at Urbana-Champaign, Urbana, IL 61801.

IEEE Log Number 9212346.

tain specification. The requirements for hold times are dif-
ferent in nature, and are not addressed in this paper.

Given the MOS circuit topology, the delay can be con-
trolled by varying the sizes of transistors in the circuit.
Here, the size of a transistor is measured in terms of its
channel width, since the channel lengths in a digital cir-
cuit are generally uniform. Roughly speaking, the sizes
of certain transistors can be increased to reduce the circuit
delay at the expense of additional chip area.

For a Combinational circuit, the transistor sizing prob-
lem is formulated as

minimize Area

subject to Delay 5 TSFc

and Each transistor size 2 Minsize (1)

Several other formulations have also been suggested,
such as minimizing the area-delay product, and minimiz-
ing the delay subject to a constraint on the maximum per-
missible circuit area.

It has widely been recognized that the area, measured
as the sum of transistor sizes, and the delay along a path
of the circuit can be represented by posynomial functions
of the sizes of transistors in the circuit. A posynomial is
a function g of a positive variable x = [xl, x2 * x,] E
R" that has the form

n

g(x> = c y. rI x;"
] ' i = l

where the exponents cyij E R and the coefficients yj > 0.
Such a function has the useful property that it can be
mapped onto a convex function through an elementary
variable transformation, (xi) = (e '') [11.

In this paper, the delay of a circuit is defined to be the
maximum of the delays of all paths in the circuit. Hence,
it can be formulated as the maximum of posynomial func-
tions. This is mapped by the above transformation on to
a maximum of convex functions, which is also a convex
function.

The most commonly used measure of the circuit area is
given by an affine function of transistor sizes [3], [5] -
[12]. While this measure is not very accurate, it has the
advantage of being a posynomial function of the sizes of
transistors in the circuit.

This posynomial area function is transformed into a

,

0278-0070193$03.00 0 1993 IEEE

1622 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1 2 , No. 11. NOVEMBER 1993

convex function by the same mapping. Therefore, the op-
timization problem defined in (1) is mapped to a convex
programming problem, i.e., a problem of minimizing a
convex function over a convex constraint set. Due to the
unimodal property of convex functions over convex sets,
any local minimum of (1) is also a global minimum.

Most approaches model the delay of a CMOS gate as
the Elmore time constant [2] of an equivalent RC network
representing the circuit under the simplifying assumption
that the input signals at the gate nodes of transistors are
step functions. Such an assumption ensures that the delay
function is posynomial [3], but is not realistic, since ac-
tual signals have nonzero rise or fall times. Hedenstiema
and Jeppson [4] have developed a delay model for CMOS
inverters that creates an equivalent RC network for the
inverter when the signals at the gate nodes of transistors
have nonzero rise or fall times. This model is also posy-
nomial, and has been adapted in the transistor sizing tool,
MOGLO [5] .

Various methods have been used for optimization.
TILOS [3], [6], performs the task by iteratively identi-
fying a critical delay path, and using a heuristic method
to reduce the delay along this path. The iterative process
stops when the critical path (i.e., the largest delay path
among all paths between a primary input and a primary
output) meets the delay constraint. All transistors are in-
itially set to the minimum size, and the sizes of only those
transistors that lie on the critical path are increased, in an
attempt to meet the delay constraint by increasing the sizes
of as few transistors as possible. A subsequent algorithm
proposed by Shyu et al . [7] works in two phases. It uses
TILOS to generate a rough initial solution in the first
phase. In the second phase, it converts the problem to a
mathematical optimization problem in a smaller parame-
ter space (corresponding to sizes of transistors on the paths
of worst delay), and uses a method of feasible directions
to find the optimal solution. The use of the reduced space
serves to reduce the complexity of the optimization prob-
lem. iDEAS [8], like TILOS, iteratively reduces the delay
along the critical path; it differs from TILOS in that it
changes the size of more than one transistor in each iter-
ation. The methods used by Cirit [9], Hedlund [lo] and
Marple [131, [141 formulate non-linear programs, and
solve them by the method of Lagrangian multipliers. An-
other approach, as practised in MOSIZ [l l] , CATS [12]
and COACH [15], is to perform the transistor size opti-
mization as a two-step iterative process. The first step is
an outer loop in which a timing ‘budget,” Ti, is assigned
to each gate i , using a coarse simplification based on the
overall delay specification. In the inner loop, the transis-
tors in gate i are sized optimally so as to satisfy the timing
budget, Ti, for that gate. The partitioning of the task into
two steps serves to reduce the computational complexity
of the algorithm.

There are several problems associated with the above
optimization methods. Essentially, they perform a se-
quence of local optimization over a reduced parameter
space, hoping, but not guaranteeing, that such optimiza-

tions would lead to a global optimum. Moreover, apart
from using the unimodality property, none of these algo-
rithms takes advantage of the fact that the optimization
problem can be posed as a convex programming problem.

With regard to delay modeling, each of the algorithms
described in this section, except for [5], assumes wave-
forms with step transitions at the input and output of each
gate. This is not realistic, since actual waveforms have
non-zero rise and fall times. In [5] , although delay models
accommodate the effects of non-zero transition times, the
accuracy of the optimization is compromised by choosing
uniform widths W,, and Wp for all n-transistors and
p-transistors, respectively, in a gate.

In this paper, we tackle the transistor sizing problem as
defined in (l) , which is the most common form of the
problem faced by practising circuit designers. The other
formulations mentioned earlier in this section can also be
handled using the same approach.

We use a new and more accurate delay estimator that
permits waveforms with non-zero rise and fall times, and
computes rise and fall delays separately. The details of
the delay estimation algorithm are furnished in Section 11.
An efficient convex programming method [161 is used for
global optimization over the parameter space of all tran-
sistor sizes in a combinational subcircuit. This algorithm
is capable of handling large problem sizes without having
to prune any variables; moreover, its complexity is inde-
pendent of the number of constraints. Hence, the opti-
mization procedure is guaranteed to solve the problem ex-
actly by finding the global minimum of the optimization
problem, unlike many other problems which make sim-
plifying assumptions for tractability, but cannot guarantee
optimality and reasonable runtimes. The algorithm starts
by bounding the convex domain by an initial polytope.
By using special cutting plane techniques, the volume of
this polytope is shrunk in each iteration, while ensuring
the optimal solution lies within the boundary of the poly-
tope. The iterative procedure stops when the volume of
the polytope becomes sufficiently small. A more complete
description is given in Section 111. Since this is the first
practical implementation of the convex programming al-
gorithm [16] on problems of the size that we have han-
dled, a considerable portion of this paper is devoted to
practical aspects of the implementation. The extension of
the algorithm from combinational circuits to general se-
quential circuits is outlined in Section IV. Finally, exper-
imental results to illustrate the efficacy of this technique
are presented in Section V.

11. THE DELAY ESTIMATION ALGORITHM
In this section, an algorithm for estimating the worst-

case delay through the circuit, over all possible input
combinations, is described.

Consider a combinational CMOS circuit with a set of
primary input nodes and primary output nodes. The cir-
cuit is first divided into channel-connected components
(henceforth referred to simply as components); each com-

SAPATNEKAR et al . : EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM 1623

ponent corresponds to a set of transistors that are con-
nected by drain and source nodes.

More formally, the definition of a component can be
given by the following construction. Create an undirected
graph with a vertex for each circuit node and an edge be-
tween the drain and source node of each transistor. Next,
split the vertices corresponding to the ground node, the
supply (VDD) node, and the primary input nodes such that
each of these vertices is incident on only one edge after
splitting. A component is then a set of transistors corre-
sponding to the edges within a connected component of
the graph. This process is illustrated in Fig. 1.

The input nodes of a component consist of all the gate
nodes of transistors in the component, and any drain or
source node of a transistor in the component that is also
a primary input. A component’s output nodes include any
drain or source node of a transistor in the component that
is either a primary output, or a gate node of some transis-
tor in the circuit.

A technique known as Program Evaluation and Review
Technique (PERT) [171 is used to compute the maximum
overall rise and fall delays between primary inputs and
primary outputs of the circuit. A trace-back method is then
used to obtain the critical path, which consists of the set
of gates that lie on the largest delay path from a primary
input to a primary output of the combinational network.
Two numbers th and tl are assigned to each output node
of each component in the circuit, which correspond to the
total rise and fall delay from the primary inputs, respec-
tively. In addition, for each component, we compute Ah
and A,, the Elmore delays of an RC network that corre-
sponds to the worst-case rise and fall scenarios, respec-
tively. Additionally, the output transition waveform is
modeled as a function that varies linearly with time. The
transition times of the rising and falling waveforms at the
output of the component are taken to be 2Ah and 2A1 re-
spectively.

Fig. 2 shows the input waveform that triggers an output
fall transition of an inverting gate in response to an input
with an arrival time of th,max and transition time 7. The
definitions of t , and A, for the output response are illus-
trated in the figure; th and Ah are defined in a similar man-
ner.

A. Finding the Worst-case Elmore Delay
A MOS transistor is modeled as a voltage-controlled

switch with an on-resistance Ron between drain and source
and three grounded capacitances c d , Cs, and Cg at the
drain, source, and gate terminals, respectively. The re-
sistance and capacitances associated with a MOS transis-
tor of channel width x are taken to have the following
dependence [7] on x:

Ron 0: 1/x

c d , cs, cg OC x
The PERT technique schedules components in order for

T

Component 2

(b)
Fig. 1 . (a) An example CMOS circuit. (b) Its component graph showing

two components.

Y

I

Vout I

Fig. 2. Models used to represent input and output waveforms.

in a scheduled component could be a steady logic 0, a
steady logic 1, a logic 0 to logic 1 transition, or a logic 1
to logic 0 transition, corresponding to a switch that is
either ON, OFF, or in transition. The worst-case Elmore
delay at an output node of the component must be found
over all possible input combinations. Let o denote an out-

evaluation. The waveform at an input node of a transistor put node of the component. The algorithm for finding the

1624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 11, NOVEMBER 1993

worst-case fall delay at o is described below; the worst-
case rise delay at o can be found in an analogous manner.

The component is represented by an undirected
weighted graph, G, with an edge between the drain and
source nodes of each transistor in the component. Edge
weights are given by the resistance R,, of the correspond-
ing transistor. The VDD node and all of its incident edges
are then removed from the graph. Let t h , m a x denote the
maximum value of t h among all input nodes of the com-
ponent and suppose this occurs at the gate node of an
n-type transistor corresponding to an edge emax in G. It is
assumed that the worst-case path is the largest resistive
path (LRP) (i.e., the path of largest weight) between o
and ground that passes through emax. This assumption is
valid when the load capacitance at the output node is much
greater than the internal capacitance at any node that lies
on any path between the output node and the ground node
through emax, as is often the case for CMOS circuits. As
one pushes a component to its speed limit, internal node
capacitances will no longer be small. However, since the
capacitances that need to be driven by the component
would probably increase, it is hoped that this assumption
will hold. For the circuit delay specifications reported in
this paper, it is seen in Section V that the approximation
is valid.

Since finding the LRP is equivalent to the longest path
problem in a graph which is NP-hard [18], we have de-
veloped a heuristic to perform this task. This heuristic is
exact for series-parallel graphs, such as CMOS complex
gates, and can be outlined as follows.

of larger weight is called P 1 . If the weight of P 1 is larger
than that of P , then the present tree T is updated by re-
moving any edge from Tl that belonged to P but not to
P 1 . Also, P is reset to P 1 and the heuristic proceeds to
process the next link, and so on, until all links of the orig-
inal tree have been processed. The path between o and
ground in the final tree produced by the heuristic is re-
ferred to as the largest resistive path (LRP). In case of
series-parallel graphs, the heuristic does indeed generate
the path of largest resistance from output to ground; in
other cases (such as graphs with bridges), it gives a good
approximation.

Now, consider any spanning tree T, of the graph G. If
Pp and P , are the paths to ground from nodes p and q,
respectively, in T,, let Rpq denote the resistance of the
path Pp n P,. The Elmore delay [2] between o and the
ground node in the RC-tree represented by T, is given by

c Roj Cj
j e T w

(3)

where Cj is the capacitance to ground at nodej in T,. Note
that while finding the Elmore delay, the capacitances
which lie between the switching transistor and the supply
rail are assumed to be at the voltage level of the supply
rail at the time of the switching transition, and do not
contribute to the Elmore delay.

In order to find a tree that contains the LRP and which
maximizes the Elmore delay, certain edges must be added
to the LRP in such a way that Roj is maximized for every
nodej in the graph. The algorithm to construct the worst-

~

T

maxW = sum of weights of edges in P
LINK = edges in G - T
for each edge e E LINK {

T l = T U e
P1 = max weight o-to-ground path in Tl through emax
W = sum of weights of edges in P ,
i f (W > maxW) {

= maximum weighted spanning tree in G containing emax such
that the path P between o and ground in T contains emax

e’ = any edge in P - (P n P I)
T = T, - e ’ , P = P I , maxW = W

I
I

The heuristic begins by finding a maximum weighted
spanning tree T of G that contains the edge emax, using a
variant of Prim’s algorithm [181. Let P’ denote the unique
path in T between o and ground. If P’ contains emax, set
P to P ’ ; otherwise an edge, e T , is added to T such that
T + e has a path P between o and ground through emax,
and the e is the edge of greatest weight among all edges
that satisfy this condition. The introduction of e creates a
unique cycle; an edge e ’ , such that e’ E P’ and e’ g! P , is
removed from T + e , to give a new initial tree T.

The edges which are not in T constitute the set of links.
A link is then added to the present tree T to produce a
subgraph Tl that contains a unique cycle. Therefore, there
can be at most two paths from o to ground in TI. The path

case tree T, from the LRP is as follows. Initially T, is
taken to be the LRP itself. For a node nl g! T, the algo-
rithm finds a node n2 E T, that is farthest from the ground
node and is connected to nl by a path that does not inter-
sect T,. This path is then added to T, and the procedure
is repeated until all nodes of G are included in the tree
T,. The worst-case fall delay at o is then computed using

Example I : Consider the graph G shown in Fig. 3. As-
sume that the LRP between the output node o and ground
has been found to be d, e. Initially, T, is taken to be the
LRP d, e . Consider node nl which is connected to node
o through several paths, one of which is j, k . This path
is added to T, which now becomes d, e, j, k. Note that

(3).

SAPATNEKAR et al.: EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM 1625

n5v
GND

Fig. 3 . Formation of a tree corresponding to the worst-case fall time

both nodes n1 and n2 are now part of the tree T,. The
nodes n4 and n5 are then added to the tree by adding the
edges a and b respectively. Finally, the node 126 is added
to the tree by adding the edge f to it. This completes the
formation of the worst-case tree which is d, e, j, k, a, b,
f indicated by the bold edges in Fig. 3. If branch d cor-
responds to the switching tansistor, the worst-case Elmore
delay is given by

(Rd + Re) (CO + c m + cn, + cn, + cnl). (4)

Finally, the value of tl for output node o is computed
by adding th,max, the Elmore delay of the worst-case RC
network, At, and a term [4] related to the transition time
of the rising input at the input node corresponding to the
worst-case Elmore fall delay.

A more detailed description of how the effect of input
transition time is incorporated is provided later in this sec-
tion. This procedure is repeated for all output nodes of
the component.

The value of th, the worst-case rise delay at each output
node of the component, can be found in a similar manner.
The weighted graph representing the component is con-
structed as before except that the ground node is removed
instead of the VDD node. The rest of the procedure to find
the worst-case Elmore rise delay is identical to that of the
fall delay except that the role of the ground node is re-
placed by the VDD node, and the roles of th and A,, are
exchanged with those of tl and A[in the fall delay case.

In other delay estimators that we have come across, the
Elmore rise and fall delays are computed directly from the
LRP without appending additional edges to extend it to
the worst-case RC-tree as described above.

B. Delay Model for Components under Nonstep
Transitions

In [4], it has been shown that a good approximation to
the delay, A, of a CMOS inverter under excitation from

a nonstep input with rise time 7 , i.e.,

t < O

O < t < 7

t > T
is given by

where
V , , = Threshold voltage of nMOS transistor

VDD = Supply voltage
Astep = Transition delay of the inverter under a step in-

put excitation.

A is defined as the difference between the time when the
output signal crosses the v D D / 2 level, and the time at
which input signal reaches v D D / 2 . We model the falling
output signal using a form similar to the input waveform
uin in (5). The relationship between the input and output
signals in our model, for the falling output transition, is
shown in Fig. 2.

A general complex gate such as the A01 gate, when
excited by a step excitation, may be represented by an
equivalent inverter Z whose size is determined by the El-
more delay of the worst-case RC tree described earlier.
For an excitation of the type in (9, we may consider the
general complex gate as being equivalent to the inverter Z
being excited by the same excitation. Hence, (6) also
holds for complex gates.

The form of the path delay under step excitations is
described in [3]. We examine the change required in this
form to include the effect of waveforms with nonstep tran-
sitions as described in (9, under the assumption that the
signal at the output of a component is modeled by a ramp
function, as described earlier in this section.

Let Ai,step refer to the delay of component i on a path
of the circuit, with all input waveforms having step tran-
sitions. The delay of the circuit, Delaystep, is given by

I

Delaystep = A1,step + &,step + * * + An,step. (7)
When we incorporate the effect of the transition time, and
add the simplifying assumption that the magnitude of the
threshold voltage is the same for nMOS and PMOS en-
hancement mode transistors, the delay along the path is
given by

1626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

where

Delayk = circuit delay up to k th
component from primary inputs

threshold voltage (assumed equal
in magnitude for
nMOS, PMOS for simplicity)

n - k c C Y i .
i = O

Thus, the delay is expressed by the weighted sum of
the Ai,step values. Since each of the Ai,step expressions is
posynomial [3], and the wi's are constant, the expression
for delay along a path under excitations with nonstep tran-
sitions is a posynomial.

In the case where the threshold voltage, V , is different
in magnitude for n- and p-type transistors, the form of (8)
remains the same, but the expression for the wk's is more
involved. In this work, we have assumed that the mag-
nitude of the threshold voltage is the same for n- and
p-type transistors.

As will be shown in Section V, the delay times calcu-
lated by our estimator are in good agreement with SPICE
results.

C. Area and Delay Functions
Let n denote the number of transistors in a combina-

tional circuit and let x = [xl, x2, , x,] be an
n-dimensional vector of the transistor sizes. The total area
of the circuit is taken, for simplicity, to be the sum of the
transistor sizes, i.e.,

n

Area(x) = xi. (9)
i = 1

Note that the area function is a posynomial in x.
The equation for the overall delay Delay(x) through the

critical path, using our gate-delay model, has been shown
to be a posynomial of the form

n

Delay(x) = y, ,IT xgv
j i = 1

where

yj 2 0, cyij E {-1, 0, l} vi = 1, 2, * - , n.
Also, aij may be -1 only for critical transistors, i.e.,
transistors that lie in the LRP of a component on the crit-
ical path. This is because the delay is expressed as a sum
of RC products. The only transistors that contribute terms
with an exponent of ' - 1 ' to these RC products are those
that act as resistances, i.e., the critical transistors. Any

other transistor may either contribute a term with expo-
nent 'l ' , when it acts as a capacitance, or may make no
contribution to the RC product.

111. THE CONVEX PROGRAMMING ALGORITHM
The objective of the algorithm is to solve the following

transistor sizing problem
n

minimize Area(x) = xi
i = 1

subject to Delay(x) I TsFc (1 1)

where the delay Delay(x) is maximum of delays along all
paths to a primary output node of the circuit. By making
the variable transformation

(Xi) = (eL)

the original transistor sizing problem (1 1) of minimizing
a posynomial area function over posynomial constraints
becomes

n

minimize Area(z) = ,e e''
r = l

subject to D(z) I TsP. (12)

The other formulations mentioned in the introduction,
namely, minimizing the delay subject to area constraints,
minimizing the area-delay product, or a formulation that
involves the area, delay and power dissipation, can also
be handled by this algorithm. However, since the above
formulation is the most practically useful one, we restrict
our discussion to this formulation.

Note that under this transformation, the delay along a
path has the form

i yi exp (5 i = 1 a,,,>

which is a convex function. Since the circuit delay is de-
fined to be the maximum of all path delays, and the max-
imum of convex functions is also convex, D(z) is a con-
vex function. It can be seen that Area(z) is also a convex
function of z. Hence, (12) is a convex programming prob-
lem of minimizing a convex function over a convex set of
constraints.

The algorithm proposed by Vaidya in [16] provides an
efficient technique for solving (12). Define thefeasible set

S = {Z E R": D(z) I Tsp} (13)

and let zOpt be the solution to (12). Initially, a polytope P
that contains zOpt is chosen. It is of the form

(14)
where A E R" and b E R". Here, m denotes the number
of linear inequality constraints describing the polytope.
The initial polytope P, for example, may be selected to
be an n-dimensional box describing the set

P = {z: Az 2 b}

{z: loge (Xmin) I ~i 5 loge (Xmax>> (15)

SAPATNEKAR et a l . : EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM 1627

where xmin and xmax are the user-specified minimum and
maximum allowable transistor sizes, respectively. Thus,
this system naturally incorporates upper and lower bound
constraints on transistor sizes.

The algorithm proceeds iteratively as follows. First, a
center z, deep in the interior of the current polytope P is
found by using a technique which will be described later.
Next, an oracle is then invoked to determine whether or
not the center z, lies within the feasible region S. From
the definition of S, the oracle is simply a routine that in-
vokes the delay estimator described in Section 11, with the
transistor sizes xi = e''.', to determine whether or not the
delay requirement is met. If the point z, lies outside S, it
is possible to find a separating hyperplane passing through
z, that divides the polytope P into two parts, such that S
lies entirely in the part satisfying the constraint

cTz I p (16)

c = - [VD,ritpattl(z)l (17)

where

is the negative of the gradient of the critical path delay
(constraint) function, and

p = cTzc. (18)
The separating hyperplane described above corresponds
to the tangent plane to the path delay along the critical
path. Note that the discontinuity of the derivative of the
circuit delay function does not affect matters, since we
only deal with the gradient of a path delay, which is a
continuous function.

If the point z, lies within the feasible region S, then
there exists a hyperplane that divides the polytope into
two parts such that zOpt is contained in one of them satis-
fying the constraint (16) with

c = -[VArea(z)lT (19)
being the negative of the gradient of the area (objective)
function, and 0 is once again defined by (18). In either
case, the constraint (16) is added to the current polytope
to give a new polytope that has roughly half the original
volume. The process is repeated until the polytope is suf-
ficiently small.

Since this is the first practical implementation of this
convex programming algorithm on problems of the size
that we have handled, our work addresses several issues
that were inconsequential to previous implementations that
worked with a smaller number of variables. Hence, a de-
scription of some of the practical issues involved is pro-
vided in some detail in this section.

Example 2: Consider the problem

minimize f (n, , x2)

s.t. (XI, x2) E S

where S is a convex set and f is a convex function. The
shaded region in Fig. 4(a) corresponds to S, and the dot-
ted lines show the level curves of the functionf. The point

. . . .

..... ,

Fig. 4. An example to illustrate the convex optimization algorithm.

x* is the solution to this problem. The procedure begins
by bounding the expected solution region by a closed
polytope, which corresponds to a rectangle in two dimen-
sions. This is shown in Fig. 4(a). The center, z, of this
rectangle is found. The oracle is invoked to determine
whether z, lies within the feasible region or not; in this
case it can be seen that z, lies outside the feasible region.
Hence, the gradient of the constraint function is used to
pass a hyperplane through z,, such that the polytope is
divided into two parts, one of which contains the solution
x*. This is illustrated in Fig. 4(b), where the shaded re-
gion corresponds to the polytope containing the solution.
The process is repeated on this new smaller polytope. Its
center lies inside the feasible region, and hence the gra-
dient of the objective function is used to generate a hy-
perplane that further shrinks the size of the polytope, as
shown in Fig. 4(c). The result of another iteration is il-
lustrated in Fig. 4(d). The process continues until the
polytope has been shrunk sufficiently.

It can be seen that the key parts of this algorithm are:
1) finding the center z, of the existing polytope P ,
2) generating gradient functions in (17) and (19) above,

3) deciding when to terminate the algorithm.

I

and

A . Procedure for Finding the Center of the Polytope
We would like to find a point inside a polytope that

satisfies the property that any separating hyperplane drawn
through it divides the original polytope into two parts of
approximately equal volume. Finding such a point is dif-
ficult [161, and so we settle for finding a point that is rea-
sonably deep within the interior of the polytope, and can
be found through relatively inexpensive computation.

Consider a polytope P defined by (14), and let a[be the
i th row of the m X n matrix A , and bi be the i th element
of the m-dimensional vector b. The center z,, is taken to
be the vector that minimizes the following log-barrier
finction

'

m

F(Z) = - ,Z log, (a[z - bi). (20)
r = l

1628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

Note that near the boundary of the polytope, F(z) tends to
infinity and its value decreases as one moves deeper into
the interior of the polytope. Also, the value of F(z) is
undefined outside the boundary of the polytope. More-
over, F is a convex function of z E P , with a 1 X n gra-
dient vector

I . Method 1: The Hessian at zk may be written as

H(zk) = v2F(zk)
m

(26)
aiar = c = ATAA

i = I (arzk - bi)2

where A is a diagonal matrix.
m -

af
VF(z) = - c

i = 1 (a[z - bi)

and an n X n Hessian matrix

Since the initial polytope is a box, its center is easy to
find. At each subsequent iteration, a constraint of the form
cTz 1 fl is added to the previous polytope whose center
is found iteratively using the Newton's method [19] as
follows. The initial point zo for the Newton's method is
found by moving halfway to the closest boundary in the
direction c. The initial point zo thus obtained is guaran-
teed to be in the interior of the new polytope.

The Newton's method for finding the center z, then
generates iterates of the form

(23) z k + 1 = zk + t*'$k

for k = 0, 1, 2, * *

Newton direction at zk given by
, until convergence, where t k is the

= -[v 2F(zk)]-'[vF(zk)]T (24)

and t* is the point that minimizes the one-dimensional
function

+(t) = F(zk + t t k) (25)

and is obtained by performing a one-dimensional line-
search.

Note that the process of computing a Newton direction
by (24) involves the inversion of an n X n Hessian matrix
which takes O(n3) time and can prove to be rather expen-
sive. This expense can be cut down by maintaining the
inverse of an approximate Hessian fi via rank-one updates
[19] as described pelow, and by using an approximate
Newton direction '$k instead of '$k in the line search. We
note that using an approximate Newton direction instead
of the exact one essentially does not affect the conver-
gence properties of the center-finding algorithm [161.

B. Rank-One Updates
Let zk be the point at the beginning of the (k + 1)th

iteration of Newton's method for finding the center z, of
the polytope P described by (14) .

Two methods for maintaining the approximate Hessian,
using rank-one updates [19] are outlined below.

Let 62 > 0 be small parameters. An approximate
(2 1) Hessian is given by

= A T h (27)

where a E R" is a diagonal matrix such that at theAStart
of the (k + 1)th iteration, the ith diagonal entry of A, A,,
satisfies the condition

(a:zk-I - b,)-26;' I A,, 5 (ai'zk-1 - b,)-26*

V 1 1 i l m . (28)

We maintain an approximate inverse Hessian, E-'; the
following rank-one correction procedure is used to update
X-' at the beginning of the (k + 1)th iteration.

, m {
if (A,, < (arzk - b,)-26;1) or

For each i = 1, 2 , *

(A,, > (a[zk - b,)-262) then {
w = (air,k - b,)-2 - A,,
A,, = (arz, - b,)-2
e = X - ' a i
p = w(1 + ware)-'
x-I = x-I - peeT

1
1
One of two schemes may be used to calculate the ap-

Scheme (a): Maintaining a more accurate % - I , and set-
proximate Newton direction.

ting

It can easily be verified that each rank-one update to X-'
is of complexity O(n2). Typically, the number of updates
to a per iteration is less than O(&) and this reduces the
average cost of an iteration of the center finding algorithm
from 0 (n 3) to O(n2 7.

Scheme (b): Maintaining a more approximate X-', and
using it as a preconditioner for a preconditioned conjugate
gradient method [20] that solves

$ k = -X-l(VF(zk))T. (29)

Hgk = -(vF(Zk))T. (30)
This method trades off the cost of maintaining X-' ac-
curately against the cost of performing a few iterations of
the preconditioned conjugate gradient method.

For Scheme (a) for maintaining an approximate inverse
Hessian described above, the parameter above is typi-
cally chosen to be around 1.5, while a2 may be set to
about 5 , while for Scheme (b), typical values for 61 and
h2 are 3 and 20 respectively.

The reason why 62 is set to be larger than 6' is as fol-
lows. When w is positive (i.e., when A2 determines
whether an update is to be made or not), the denominator

SAPATNEKAR er al.: EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM 1629

of p is relatively large, and hence numerical errors in the
calculation of p are damped out. In the case where w is
negative (i.e., the update decision is dependent on the
values of A1), the denominator of p grows smaller as 61
increases, and a large 61 could lead to an amplification of
numerical errors. small. Therefore, the choice of 62 may
be more liberal than that of

In each of these two methods, it suffices to maintain
E-'; it is not even necessary to explicitly find H.

2 . Method 2: The Hessian at zk may also be written as

H = I' + UTQU. (31)

Let p be the number of additional planes added to the
initial polytope, the box, described by (15). I' E R"'" is
the Hessian at zk due to the planes of this box only, and
is a diagonal matrix. The ith diagonal element of r, de-
noted yS, is given by

- 2 - 1 1 Ytr = [k k r - Z r n ~ n I - ~ + k m a x - Z k , r l

The rows of U T E Rp ' " correspond to the planes added
to the initial polytope, i.e., the (2n + 1)th to the mth rows
of AT. Cl E R p x p is a diagonal matrix, whose diagonal
entries correspond to the last p diagonal entries of the ma-
trix A in (26).

We may now write

H - 1 = r-1 - r-lu[Q-l + ~ ~ r - ~ u] - ~ u ~ r - I (32)

(33)

We maintain an approximation e-' to C-I. An ap-

(34)

As in Method 1 , it suffices to maintain the approximate
inverse of C; it is not necessary to explicitly store C itself.
The approximate Hessian or the approximate inverse Hes-
sian are never explicitly maintained; the search direction
is found by computing 5 = - x - ' [V F (z ,) l T , which in-
volves multiplication of (34) for X-' by a n X 1 vector.
The cost of this computation can be seen to be O(np) (if
n >> p) , i.e., the number of added planes is much less
than the problem dimension. This is seen to be the case
for large problems, and hence the use of this method
would speed up the computation substantially for large
problems.

If the number of additional lanes, p has not changed
since the last calculation of e-', all that needs to be done
to get the new C-' is a set of rank-one updates. If a new
plane has been added, a method outlined in [21] may be
used to update e-'. The method involves a rank-one up-
date and a few additional operations to incorporate the
effect of the newly-added plane. As before, one of two
schemes may be used to calculate the approximate New-
ton direction:

- - r-1 - r-luc-luTr-1
where C = 0-l + UTF-'U.

proximate inverse Hessian is then given by
x-1 = r-1 - r-1,ye-lUTr-l

a) Maintaining a more accurate CY1, and setting

i k = - X - l (V F (z ,)) T . (35)

b) Maintaining a more approximate e-' , and using it
to as a preconditioner for a preconditioned conju-
gate gradient iteration that solves

H{k = -(vF(Z,))T. (36)

It may be noted that the preconditioned conjugate gra-
dient does not need an approximate H or 3 t - I explicitly,
but multiplies X-' by a n X 1 vector; we have already
seen that this operation is computationally cheap when p
is small.

It was found experimentally that Scheme (b) of Method
2 gave the best overall results for the problems that we
worked on.

C. One-Dimensional Line Search
Once the Newton direction Ek of (24) has been found,

the value of t* that minimizes the one-dimensional func-
tion 4(t) defined by (25) is obtained as follows. First, the
allowable values o f t are bounded by tmin and tmax, where
tma, is found by computing the distance from the point zk
to the nearest boundary of the polytope along the t k di-
rection. The derivative of 4 in the interval [0, tmax] can
be shown to be

m

where si = aTtk and ri = a:zk - bi for each i = 1, 2 ,
, m. Note that

4'(0) = vF(zk) * E k

= -VF(Z,) * H-' [VF(zk)lT < O (38)

since the Hessian of F, a convex function is positive def-
inite. Also,

lim +'(t) > 0. (39)
t + fmax

As a result of (38) and (39), and since the function 4 is
convex in the interval [tmin, t,,,], tmin can be set to 0, and
a simple bisection search can be used to find t* at which
$'(t*) = 0 as follows:

repeat {
t* = (tmin + t m a x) / 2
if (+'(t*) and 4'(tmin) are of opposite sign)

else
t,,, = t"

t . = t * min

1
until (1 4'(t*) 1 < E)

where E is a small positive number.

D. Generation of Hyperplanes
When the center z , of a polytope lies within the feasible

region S, the gradient of the area function is required to
generate the new hyperplane passing through the center.
The area function of (12) has a gradient at the point z

1630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12. NO. I I , NOVEMBER 1993

given by

VArea(z) = [e", e n , * , e'"] (40)

In the case when the center z, lies outside the feasible
region S, the gradient of the critical path delay function
Dcritp.&c) defined by (10) is required to generate the new
hyperplane that is to be added. For each k = 1, 2, * - ,
n, the kth component of the required gradient vector at a
point z is given by (see (10))

[VDcritpath(Z)lk = r j a k j exp (i$l aczi). (41)

Note that the transistors in the circuit can contribute to
the kth component of the gradient of the delay function
in either of two ways:

a) If the kth transistor is critical i.e., it lies on the LRP
of a component on the critical path of the circuit),
or

b) if the kth transistor is a capacitive load for some
critical transistor.

Transistors that satisfy neither of these two require-
ments have no contribution to the gradient of the delay
function.

E. Termination Criterion
The algorithm should be terminated when the volume

of the final polytope is sufficiently small. In practice, near
the optimum, the polytope becomes flat in the direction
normal to the gradient of the area. A practical termination
criterion uses this property.

From the current center, zc, let zl and z2 be the two
nearest points on the boundary of the polytope, in the di-
rection of the positive and negative gradient of the area
respectively. The difference between the area of the cir-
cuit corresponding to the transistor sizes at z1 and z2 pro-
vides a measure of the flatness of the polytope in the di-
rection of the area gradient. Hence, the termination
criterion is taken to be

(42)
I Area@ - Area(z2) I

Area@,)
< E

where E is a small user-specified number (a reasonable
default value is 0.01).

IV. EXTENSION TO SEQUENTIAL CIRCUITS
For sizing sequential circuits, it is first required that

latches in the circuit be identified. Next, the combina-
tional subcircuits that lie between these latches are ex-
tracted, and the delay constraint for each of these subcir-
cuits is computed. For each subcircuit, the transistor
sizing problem is solved by minimizing the area of the
subcircuit, while ensuring that its delay requirement is
satisfied.

The task of identifying latches proceeds as follows. The
circuit is represented by a graph, G, with vertices corre-
sponding to components, and with edges drawn from a

component to each component that it fans out to. Feed-
back loops in the circuit (e.g., cross-coupled NAND gates),
which manifest themselves as strongly connected com-
ponents in this graph, are identified using Tarjan's algo-
rithm [22] .

Next, each clock signal is traced from the primary in-
puts, proceeding from a component to each of the com-
ponents that it fans out to, until the signal intersects either
a feedback loop or a transmission gate. Such a feedback
loop or transmission gate is identified as a latch. Thus,
this procedure identifies latches which are clocked not
only by clock signals at the primary input, but also by
qualified clock signals.

All latches are then removed from the circuit. In case
of transmission gate latches, this could result in a single
component being bronken up into two or more compo-
nents. A new graph G is formed, in the same way as G2
to represent this new circuit. A breadth-first search of G
can detect strongly connected components of this new cir-
cuit; each such strongly connected component corre-
sponds to a combinational subcircuit that lies between a
set of input latches and a set of output latches. From the
clock arrival times at these latches, the timing require-
ments for the combinational subcircuits can be found.

V. EXPERIMENTAL RESULTS
The algorithm described in the previous sections have

been implemented in iCONTRAST (illinois Convex Op-
timization-based Novel TRAnsistor Sizing Tool). The
program, written in C, now consists of approximately
6000 lines of code.

The input to the program is a SPICE deck that gives a
transistor-level netlist of the circuit. In the preprocessing
stage, the circuit is first divided into channel-connected
components. Next, latches in the circuit are identified.
The circuit is divided into combinational subcircuits that
lie between latches, and the delay constraints for each such
subcircuit are determined. The main body of the proce-
dure carries out a convex optimization on each combina-
tional subcircuit.

It must be mentioned here that for our experimental re-
sults, the approximate Hessian for finding the Newton di-
rection was maintained using Scheme (b) of Method 2 de-
scribed in Section 111.

A set of test circuits described in Table I were used to
evaluate the performance of iCONTRAST. The entries
under unsized area and unsized delay correspond to the
area and delay when all transistors in the circuit are set to
the minimum size. In case of the sequential circuit, the
delay refers to the maximum stage delay for the circuit.
It may be noted that the word 'area' refers to the sum of
transistor sizes. The technology parameters used here cor-
respond to a submicron technology. The number of iter-
ations for each circuit were of the order O(n). For these
circuits, the initial polytope was taken to be a box with
the minimum transistor size being 1.8, and the maximum
size being 500.

SAPATNEKAR er al . : EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM 1631

TABLE I
CIRCUITS USED TO EVALUATE iCONTRAST

Circuit Description # Transistors

Inv6
InvlO
Tree
Add2
Add8
Add32
Seq

6-inverter Chain
10-inverter Chain
Tree of NAND gates
2-bit Adder
8-hit Adder
32-bit Adder
Sequential circuit

12
20
28
52

208
832
244

Unsized Area (pm) Unsized Delay

21.6 7.0 ns
36.0 12.6 ns
50.4 4.0 ns
93.6 24.2 ns

374.4 109.8 ns
1497.6 452.5 ns
439.2 26.9 ns

TABLE I1
RESULTS ON SIZING VARIOUS CIRCUITS USING iCONTRAST

Circuit TS,, Sized Area (pm) Execution Time # Iterations Memory Requirement

Inv6 5.0 ns
4.0 ns
3.0 ns
2.0 ns

InvlO 10.0 ns
8.0 ns
6.0 ns
5.0 ns
4.5 ns

Tree 3.5 ns
3.0 ns
2.5 ns
2.0 ns
1.5 ns

Add2 18.0 ns
15.0 ns
12.0 ns
10.0 ns
8.0 ns
7.0 ns

Add8 100.0 ns
80.0 ns
60.0 ns
40.0 ns

Add32 350.0 ns
250.0 ns
200.0 ns

Seq 20.0 ns
15.0 ns
10.0 ns

29.2
40.9
12.2

244.8

45.2
62.3

110.2
177.4
251.0

58.8
74.8

104.5
174.7
407.0

114.3
132.0
167.3
198.6
247.1
459.6

414.6
491.1
692.9

1430.3

1909.5
2866.5
4329.6

498.5
633.9

1125.8

1.2 s
1.7 s
2.0 s
2.9 s

2.5 s
2.4 s
4.1 s
5.2 s
6.6 s

11.8 s
12.3 s
14.1 s
18.3 s
20.6 s
33.5 s
34.0 s
45.9 s
60.7 s

101.6 s
160.3 s

18.2 m
12.3 rn
11.4 m
41.7 m

420.9 m
456.9 rn
543.5 m

169.6 s
258.7 s
429.4 s

26
31
34
39

31
33
50
59
62

53
64
76
93

108

71
74
79
89

115
143

147
179
236
27 1

595
545
538

86+
89'

105'

648 KB
652 KB
656 KB
660 KB

812 KB
816 KB
848 KB
860 KB
856 KB

796 KB
784 KB
820 KB
836 KB
880 KB

1.6 MB
1.5 MB
1.5 MB
1.6 MB
1.7 MB
1.8 MB

4.4 MB
5.7 MB
5.7 MB
6.0 MB

11.1 MB
11.1 MB
11.2 MB

3.0 MB
3.1 MB
3.2 MB

+The largest number of iterations for a combinational subcircuit

Table I1 shows the area of the circuit after it has been
sized by iCONTRAST to meet a delay specification, Tspec,
and the execution time on a Sun SPARCstation I. Since
our method solves the underlying convex programming
problem exactly, the areas shown here correspond to the
globally optimum solution to the transistor sizing prob-
lem, with an accuracy that is dictated by the tightness of
the user-specified termination criterion. The number of
iterations, and the memory requirement for each circuit
are also shown. In case of the sequential circuit, Seq, the
number of iterations corresponds to the maximum number
of iterations required to size any combinational subcir-
cuit.

Consider, for example, the results on the example cir-
cuit, Add8. As seen in Table I , the unsized area and delay
for this circuit are 374.4 pm, and 109.8 ns respectively.

The area penalty required to achieve a relatively loose de-
lay specification such as the first one, 100 ns, is not very
large; the active area of the sized circuit is only 1 1 % larger
than the unsized circuit. As the delay specification be-
comes tighter, the area penalty increases non-linearly ; to
achieve a delay specification of 40 ns, the active area of
the sized circuit is 182% larger than that of the unsized
circuit. A similar trend is visible for each of the other
example circuits in Table IT.

The number of iterations and the memory requirement
are seen to increase slightly in most cases with the tight-
ness of the delay specification. For the largest circuit,
however, the number of iterations is seen to be roughly
independent of the delay specification.

None of these results violates the theoretical prediction
that the order of magnitude of the number of iterations for

1632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

150.

P

x
c loo.

50 .

0 -

a given circuit is dependent only on the size of the initial
polytope (which was the same for all circuits) and is in-
dependent of the delay specification. The basis for this
prediction lies in the fact that the volume of the polytope
is roughly halved in each iteration; hence, the volume of
the polytope containing the solution is roughly the same
after the same number of iterations, regardless of where
the solution lies within the initial polytope.

In a comparison with the optimization algorithm of
TILOS [3], [6], [23], using the same delay models for
both algorithms, it was found that when the delay speci-
fication was loose, the area of the TILOS-sized circuit
was close (within a few tenths of a percent) to the optimal
one obtained using the CONTRAST algorithm. How-
ever, as the delay specification was made tighter, it was
observed that the TILOS solution moved away from the
optimal one; in some cases, the area achieved by
iCONTRAST was under 1 /3 that given by TILOS [23].
In comparison with TILOS, both the CPU time and the
memory requirements were found to be larger; however,
the improvement in the quality of the solution provided
by iCONTRAST could be considerable, since the global
optimum is guaranteed by this algorithm.

Fig. 5 shows the variation of transistor sizes in a 7-stage
inverter chain. The minimum transistor size allowed here
is 1.8 pm. The load that is driven by the chain corre-
sponds to an inverter of Wp/ W,, = 50 pm/50 pm. This
problem has exactly two paths between the primary inputs
and the primary output; the delay along both paths, i.e.,
the rise and the fall delays at the output node, are equal
after sizing, as expected. For relatively loose delay spec-
ifications, it is seen that only the last stages are made
larger, while those towards the input remain relatively un-
affected. As Tspec (given in ns) is made tighter, it is seen
that in addition to affecting the transistors at the‘ output
stages, the sizes of the transistors that are closer to the
input are also significantly increased. The sizes of tran-
sistors in the input stage are restricted by the contribution
of the user-specified resistance of the source that drives
the first stage. The variation of sizes in the n-transistor
stages is illustrated in Fig. 5(a); the variation of
p-transistor sizes, shown in Fig. 5(b), follows the same
trend as the n-transistor stages.

It should be noted that in this circuit, since the number
of n-transistors (p-transistors) in the two paths is not
equal, the nature of the variation in transistor sizes is
somewhat different from a circuit such as an 8-inverter
chain, which has equal numbers of n-transistors (p-tran-
sistors) on each path. The disparity stems from the fact
that the equivalent resistance of an n-transistor is different
from that of a p-transistor of equal size. To illustrate this,
note that the path with the larger unsized delay goes
through p-transistors 1, 3, 5 and 7. Hence, in the sized
circuit, where both path delays are equal, it is seen that
p-transistors 3 and 5 contribute to the disruption of the
smoothness of the curve by being larger than their inter-
polated values. Transistors 1 and 7, being at the primary
input and primary output respectively, are influenced by

!mor I , , , , , , ,
12.5ns

1311s

1511s

20ns

1 2 3 4 5 6 7

Stage number

(a)

i : ~ 20 O O

Stage Number

(b)
Fig. 5 . (a) Variation of p-transistor sizes for a seven-inverter chain. (b)

Variation of n-transistor sizes for a seven-inverter chain.

other considerations (namely, the input resistance and the
output capacitance, respectively), and therefore, such ef-
fects are not visible.

However, a caveat is in order here: the above consid-
erations are not the only reason for nonsmoothness of the
curve, the curve for an 8-inverter chain is seen to be non-
smooth too. Also, one should curb an instinctive tendency
to compare these variations with the smooth exponential
variations of Mead and Conway [24], since the two prob-
lems are not the same. The Mead-Conway problem prin-
cipally differs from ours in the following respects:

a) The objective of their problem is to minimize the
number of stages and the circuit delay. In our prob-
lem, the circuit topology, and hence, the number of
stages is fixed.

b) The Mead-Conway approach uses a simpler delay
model.

Finally, the performance of iCONTRAST’s delay es-
timator on a chain of 8 inverters (Inv8), a complete binary
tree of seven 2-input NAND gates (Tree), and a 2-bit adder
using complex gates (Add2), in relation with SPICE delay
values, is shown in Figs. 6, 7 and 8, respectively. To
illustrate the improvement provided by the enhancements

SAPATNEKAR et al.: EXACT SOLUTION TO THE TRANSISTOR SIZING PROBLEM

~

1633

2LoB

I s C O

leoB

5e-m

0

Clrcult lnv8

0 5e-m leC8 1.- 2eo8

SPICE delays

Fig. 6. (a) iCONTRAST delays versus SPICE delays for circuit Inv8. (b)
Elmore delay (without iCONTRAST’s enhancements) versus SPICE de-
lays for circuit Inv8.

(COB 1 , I

Clrcult Nand ,/

, -
1e-m ,,,‘

0 ‘
0 l c o D ~ 3 e o 9 4 c o o 5 . - o 9 B e o o 7 e o o B e D D D c o o l e o B

SPICE delays

Fig. 7 . (a) iCONTRAST delays versus SPICE delays for circuit Tree. (b)
Elmore delay (without CONTRAST’S enhancements) versus SPICE de-
lays for circuit Tree.

9eo8, I

2- 1
1 .U - I

considering the effects of capacitances that do not lie on
the LRP. The various SPICE delay values correspond to
a different set of transistor sizes in the circuit. For the
circuits Inv8 and Tree, where the individual gates are in-
verters and NAND gates, respectively, the values are in ex-
cellent agreement. For a circuit like Add2 that is com-
posed of complex gates, the accuracy can be seen to
deteriorate slightly, but remains close to SPICE. It is clear
from the data displayed here that the enhancements in our
algorithm provide a considerable improvement.

VI. CONCLUSION
In this paper, we have presented a convex programming

approach to solving the transistor sizing problem. This
approach is guaranteed to find the global minimum solu-
tion to the problem. Any of the commonly-specified forms
of the transistor sizing problem can be handled by this
approach; we have illustrated the algorithm on the most
useful form, given in (1). A major advantage is that the
delay constraints do not need to be explicitly stated. En-
suring that the delay of the circuit satisfies the specifica-
tion, is equivalent to ensuring that the delay along each
path of the circuit satisfies the specification; since the
number of paths in the circuit could be exponentially
large, the number of constraints could be exponential in
number. A conventional technique, such as Lagrangian
multipliers, would not be able to solve a problem with
such a large number of constraints in a reasonable time.
The complexity of the algorithm is dependent on the num-
ber of variables, the size of the initial polytope, and the
termination criterion, but is independent of the number of
convex constraints. Moreover, the discontinuities in the
circuit delay function, caused by its definition as the max-
imum of all path delays, do not require special treatment
from the algorithm as in many other transistor sizing al-
gorithms such as [7].

A new delay estimation algorithm, that takes waveform
slopes into account and calculates the worst-case delays,
is also presented. Experimental comparisons with SPICE
show that the enhancements made by this approach over
previous approaches afford a large improvement in the
quality of the solution.

The algorithm was implemented as a C program on a
SUN Sparcstation I, and results on purely combinational
circuits with up to 832 transistors, and on a sequential
circuit, have been presented here.

I
0 5e-m 1- 1.- ZCOB 25coB SeOB

SPICE delays

Fig. 8. (a) iCONTRAST delays versus SPICE delays for circuit Add2. (b)
Elmore delay (without iCONTRAST’s enhancements) versus SPICE de-
lays for circuit Add2.

of our algorithm, a comparison is provided with the delay
obtained by a simple summation of component Elmore
delays, without considering input slopes, and without

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their

numerous helpful comments, which provided them with
some further insight, and helped them to better organize
and present the material. The authors’ discussions with
Dr. J . P. Fishburn and Dr. A. E. Dunlop of AT&T Bell
Laboratories have been very helpful for the development
of iCONTRAST, and its comparison with TILOS.

1634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

REFERENCES
[l] J. G. Ecker, “Geometric programming: Methods, computations and

applications,” SIAM Rev., vol. 22, pp. 338-362, July 1980.
[2] J. Rubenstein, P. Penfield, and M. A. Horowitz, “Signal delay in

RC tree networks,” IEEE Trans. Computer-Aided Design, vol.

[3] J . P. Fishburn and A. E. Dunlop, “TILOS: A posynomial program-
ming approach to transistor sizing,” in Proc. I985 Int. Conj on
Computer-Aided Design, Nov. 1985, pp. 326-328.

[4] N. Hedenstiema and K. 0. Jeppson, “CMOS circuit speed and buffer
optimization,” IEEE Trans. Computer-Aided Design, vol. CAD-6,
pp. 270-281, Mar. 1987.

[5] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel, and W. Specks,
“Optimization of high-speed CMOS logic circuits with analytical
models for signal delay, chip area, and dynamic power dissipation,”
IEEE Trans. Computer-Aided Design, vol. 9, pp. 236-247, Mar.
1990.

[6] A. E. Dunlop, J . P. Fishbum, D. D. Hill, and D. D. Shugard, “Ex-
periments using automatic physical design techniques for optimizing
circuit performance,” in Proc. 32nd Midwest Symp. on Circuits and
Systems, Aug. 1989.

[7] J . Shyu, J. P. Fishburn, A. E. Dunlop, and A. L. Sangiovanni-Vin-
centelli, “Optimization-based transistor sizing,” IEEE J. Solid-State
Circuits, pp. 400-409, Apr. 1988.

[8] S. S. Sapatnekar and V. B. Rao, “iDEAS: A delay estimator and
transistor sizing tool for CMOS circuits,” in Proc. 1990 Custom In-
tegrated Circuits Conf., May 1990, pp. 9.3.1-9.3.4.

[9] M. A. Cirit, “Transistor sizing in CMOS circuits,” in Proc. 24th
ACMIIEEE Design Automation Conf., June 1987, pp. 121-124.

[lo] K. S. Hedlund, “AESOP: A tool for automated transistor sizing,” in
Proc. 24th ACMIIEEE Design Automation Conf., June 1987, pp. 114-
120.

[ll] Z. Dai and K. Asada, “MOSIZ: A two-step transistor sizing algo-
rithm based on optimal timing assignment method for multi-stage
complex gates,” in Proc. 1989 Custom Integrated Circuits Conf.,
May 1989, pp. 17.3.1-17.3.4.

[I21 L. S. Heusler and W. Fichtner, “Transistor sizing for large combi-
national digital CMOS circuits,” Integration, vol. 10, pp. 155-168,
Jan. 1991.

[13] D. P. Marple, “Performance optimization of digital VLSI circuits,”
Tech. Rep. CSL-TR-86-308, Stanford Univ., Oct. 1986.

[I41 D. Marple, “Transistor size optimization in the Tailor layout sys-
tem,” in Proc. 26th ACMIIEEE Design Automation Conf.., June 1989,

[15] H. Y. Chen and S. M. Kang, “iCOACH: A circuit optimization aid
for CMOS high-performance circuits,” Integration, vol. 10, pp. 185-
212, Jan. 1991.

[16] P. M. Vaidya, “A new algorithm for minimizing convex functions
over convex sets,” in Proc. IEEE Foundations of Comp. Sci., Oct.

[17] T. I. Kirkpatrick and N. R. Clark, “PERT as an aid to logic design,”
IBM J. Res. Devel., vol. 10, pp. 135-141, Mar. 1966.

[18] S. Even, Graph Algorithms. New York: Computer Science Press,
1979.

[19] D. G. Luenberger, Linear and Nonlinear Programming. Reading,
MA: Addison-Wesley, 1984.

[20] G. H. Golub and F. H. van Loan, Matrix Computations. Baltimore,
MD: The Johns Hopkins University Press, 1989.

[21] P. M. Vaidya, “An algorithm for linear programming which requires
O(((m + n)nZ + (m + n)’ ’n)l) arithmetic operations,” Mathematical
Programming, vol. 47, pp. 175-201, 1990.

[22] A. V. Aho, J . E. Hopcroft, and J. D. Ullmann, The Design and Anal-
ysis of Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

[23] J. P. Fishburn, Private communication, 1992.
[24] C. Mead and L. Conway, Introduction to VLSI Systems. Reading,

CAD-2, pp. 202-211, July 1983.

pp. 43-48.

1989, pp. 332-337.

MA: Addison-Wesley, 1980.

Sachin Sapatnekar (S’86-M’88-M’93) received
the B.Tech. degree from the Indian Institute of
Technology, Bombay in 1987, the M.S. degree
from Syracuse University in 1989, and the Ph.D.
degree from the University of Illinois at Urbana-
Champaign in 1992. He had a stint at Texas In-
struments Inc., Dallas during the summer of 1990,
where he worked on algorithms for parallel circuit
simulation.

He has been an assistant professor in the De-
partment of Electrical Engineering and Computer

Engineering at Iowa State University since August 1992. His research in-
terests lie in developing efficient techniques for the computer-aided design
of integrated circuits, and are primarily centered around physical design,
timing and simulation issues, and optimization algorithms. He has co-
authored a book, Design Automation for Timing-Driven Layout Synthesis,
(Boston, MA: Kluwer Academic Publishers), and is an Associate Editor
for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS 11: ANALOG AND
DIGITAL SIGNAL PROCESSING.

Vasant B. Rao (S’83-M’86-M‘87) received the
B.Tech. degree in electrical engineering (Elec-
tronics) from the Indian Institute of Technology,
Madras, India, in 1980, and the M.S. and Ph.D.
degrees in electrical and computer engineering
from the University of Illinois at U r b a n a d a m -
paign in 1982 and 1985, respectively.

From January 1985 to August 1991 he was an
Assistant Professor with the Department of Elec-
trical and Computer Engineering and Research
Assistant Professor with the Coordinated Science

Laboratory at the University of Illinois at Urbana-Champaign. He joined
1BM East Fishkill in September 1991 where he is currently an Advisory
Engineer in the Physical Design group of the Electronic Design Automa-
tion Laboratory. His research interests include physical design and electri-
cal simulation of VLSI circuits, stochastic algorithms for combinatorial
optimization, parallel algorithms, nonlinear programming, and graph the-
ory. He has served on the Technical Program Committee of the IEEE Cus-
tom Integrated Circuits Conference in 1989 and 1990. He has co-authored
Switch-level Timing Simulation of MOS VLSI Circuits (Norwell MA: Klu-
wer Academic Publishers), and over 40 technical papers.

Dr. Rao is a member of Phi Kappa Phi and Eta Kappa Nu.

Pravin M. Vaidya, photograph and biography not available at the time of
publication.

Sung-Mo (Steve) Kang (S’73-M’75-SM’80-F’90), for a photograph and
a biography, please see page 1402 of the September 1993 of this TRANS-
ACTIONS.

