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Abstract-A general sequential circuit consists of a number 
of combinational stages that lie between latches. For the circuit 
to meet a given clocking specification, it is necessary for each 
combinational stage to satisfy a certain delay requirement. 
Roughly speaking, increasing the sizes of some transistors in a 
stage reduces the delay, with the penalty of increased area. The 
problem of transistor sizing is to minimize the area of a com- 
binational stage, subject to its delay being less than a given 
specification. Although this problem has been recognized as a 
convex programming problem, most existing approaches do not 
take full advantage of this fact, and often give nonoptimal re- 
sults. An efficient convex optimization algorithm has been used 
here. This algorithm is guaranteed to find the exact solution to 
the convex programming problem. We have also improved upon 
existing methods for computing the circuit delay as an EImore 
time constant, to achieve higher accuracy. CMOS circuit ex- 
amples, including a combinational circuit with 832 transistors 
are presented to demonstrate the efficacy of the new algorithm. 

I. INTRODUCTION 
IRCUIT delays in MOS integrated circuits often need C to be reduced to obtain faster response times, with a 

minimal area penalty. A typical MOS digital integrated 
circuit consists of multiple stages of combinational logic 
blocks that lie between latches, clocked by system clock 
signals. Delay reduction must ensure that the worst-case 
delay of the combinational blocks is such that valid sig- 
nals reach a latch before any transition in the signal clock- 
ing the latch, with allowances for set-up time require- 
ments. In other words, the worst-case delay of each 
combinational stage must be restricted to be below a cer- 
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tain specification. The requirements for hold times are dif- 
ferent in nature, and are not addressed in this paper. 

Given the MOS circuit topology, the delay can be con- 
trolled by varying the sizes of transistors in the circuit. 
Here, the size of a transistor is measured in terms of its 
channel width, since the channel lengths in a digital cir- 
cuit are generally uniform. Roughly speaking, the sizes 
of certain transistors can be increased to reduce the circuit 
delay at the expense of additional chip area. 

For a Combinational circuit, the transistor sizing prob- 
lem is formulated as 

minimize Area 

subject to Delay 5 TSFc 

and Each transistor size 2 Minsize (1) 

Several other formulations have also been suggested, 
such as minimizing the area-delay product, and minimiz- 
ing the delay subject to a constraint on the maximum per- 
missible circuit area. 

It has widely been recognized that the area, measured 
as the sum of transistor sizes, and the delay along a path 
of the circuit can be represented by posynomial functions 
of the sizes of transistors in the circuit. A posynomial is 
a function g of a positive variable x = [xl, x2 * x,] E 
R" that has the form 

n 

g(x> = c y. rI x;" 
] ' i = l  

where the exponents cyij E R and the coefficients yj > 0. 
Such a function has the useful property that it can be 
mapped onto a convex function through an elementary 
variable transformation, (xi) = (e '') [ 11. 

In this paper, the delay of a circuit is defined to be the 
maximum of the delays of all paths in the circuit. Hence, 
it can be formulated as the maximum of posynomial func- 
tions. This is mapped by the above transformation on to 
a maximum of convex functions, which is also a convex 
function. 

The most commonly used measure of the circuit area is 
given by an affine function of transistor sizes [3], [ 5 ] -  
[12]. While this measure is not very accurate, it has the 
advantage of being a posynomial function of the sizes of 
transistors in the circuit. 

This posynomial area function is transformed into a 

, 
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convex function by the same mapping. Therefore, the op- 
timization problem defined in (1) is mapped to a convex 
programming problem, i.e.,  a problem of minimizing a 
convex function over a convex constraint set. Due to the 
unimodal property of convex functions over convex sets, 
any local minimum of (1) is also a global minimum. 

Most approaches model the delay of a CMOS gate as 
the Elmore time constant [2] of an equivalent RC network 
representing the circuit under the simplifying assumption 
that the input signals at the gate nodes of transistors are 
step functions. Such an assumption ensures that the delay 
function is posynomial [3], but is not realistic, since ac- 
tual signals have nonzero rise or fall times. Hedenstiema 
and Jeppson [4] have developed a delay model for CMOS 
inverters that creates an equivalent RC network for the 
inverter when the signals at the gate nodes of transistors 
have nonzero rise or fall times. This model is also posy- 
nomial, and has been adapted in the transistor sizing tool, 
MOGLO [ 5 ] .  

Various methods have been used for optimization. 
TILOS [3], [6], performs the task by iteratively identi- 
fying a critical delay path, and using a heuristic method 
to reduce the delay along this path. The iterative process 
stops when the critical path (i.e., the largest delay path 
among all paths between a primary input and a primary 
output) meets the delay constraint. All transistors are in- 
itially set to the minimum size, and the sizes of only those 
transistors that lie on the critical path are increased, in an 
attempt to meet the delay constraint by increasing the sizes 
of as few transistors as possible. A subsequent algorithm 
proposed by Shyu et al .  [7] works in two phases. It uses 
TILOS to generate a rough initial solution in the first 
phase. In the second phase, it converts the problem to a 
mathematical optimization problem in a smaller parame- 
ter space (corresponding to sizes of transistors on the paths 
of worst delay), and uses a method of feasible directions 
to find the optimal solution. The use of the reduced space 
serves to reduce the complexity of the optimization prob- 
lem. iDEAS [8], like TILOS, iteratively reduces the delay 
along the critical path; it differs from TILOS in that it 
changes the size of more than one transistor in each iter- 
ation. The methods used by Cirit [9], Hedlund [lo] and 
Marple [ 131, [ 141 formulate non-linear programs, and 
solve them by the method of Lagrangian multipliers. An- 
other approach, as practised in MOSIZ [ l l ] ,  CATS [12] 
and COACH [15], is to perform the transistor size opti- 
mization as a two-step iterative process. The first step is 
an outer loop in which a timing ‘budget,” Ti,  is assigned 
to each gate i ,  using a coarse simplification based on the 
overall delay specification. In the inner loop, the transis- 
tors in gate i are sized optimally so as to satisfy the timing 
budget, Ti, for that gate. The partitioning of the task into 
two steps serves to reduce the computational complexity 
of the algorithm. 

There are several problems associated with the above 
optimization methods. Essentially, they perform a se- 
quence of local optimization over a reduced parameter 
space, hoping, but not guaranteeing, that such optimiza- 

tions would lead to a global optimum. Moreover, apart 
from using the unimodality property, none of these algo- 
rithms takes advantage of the fact that the optimization 
problem can be posed as a convex programming problem. 

With regard to delay modeling, each of the algorithms 
described in this section, except for [5], assumes wave- 
forms with step transitions at the input and output of each 
gate. This is not realistic, since actual waveforms have 
non-zero rise and fall times. In [ 5 ] ,  although delay models 
accommodate the effects of non-zero transition times, the 
accuracy of the optimization is compromised by choosing 
uniform widths W,, and Wp for all n-transistors and 
p-transistors, respectively, in a gate. 

In this paper, we tackle the transistor sizing problem as 
defined in ( l ) ,  which is the most common form of the 
problem faced by practising circuit designers. The other 
formulations mentioned earlier in this section can also be 
handled using the same approach. 

We use a new and more accurate delay estimator that 
permits waveforms with non-zero rise and fall times, and 
computes rise and fall delays separately. The details of 
the delay estimation algorithm are furnished in Section 11. 
An efficient convex programming method [ 161 is used for 
global optimization over the parameter space of all tran- 
sistor sizes in a combinational subcircuit. This algorithm 
is capable of handling large problem sizes without having 
to prune any variables; moreover, its complexity is inde- 
pendent of the number of constraints. Hence, the opti- 
mization procedure is guaranteed to solve the problem ex- 
actly by finding the global minimum of the optimization 
problem, unlike many other problems which make sim- 
plifying assumptions for tractability, but cannot guarantee 
optimality and reasonable runtimes. The algorithm starts 
by bounding the convex domain by an initial polytope. 
By using special cutting plane techniques, the volume of 
this polytope is shrunk in each iteration, while ensuring 
the optimal solution lies within the boundary of the poly- 
tope. The iterative procedure stops when the volume of 
the polytope becomes sufficiently small. A more complete 
description is given in Section 111. Since this is the first 
practical implementation of the convex programming al- 
gorithm [16] on problems of the size that we have han- 
dled, a considerable portion of this paper is devoted to 
practical aspects of the implementation. The extension of 
the algorithm from combinational circuits to general se- 
quential circuits is outlined in Section IV. Finally, exper- 
imental results to illustrate the efficacy of this technique 
are presented in Section V. 

11. THE DELAY ESTIMATION ALGORITHM 
In this section, an algorithm for estimating the worst- 

case delay through the circuit, over all possible input 
combinations, is described. 

Consider a combinational CMOS circuit with a set of 
primary input nodes and primary output nodes. The cir- 
cuit is first divided into channel-connected components 
(henceforth referred to simply as components); each com- 
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ponent corresponds to a set of transistors that are con- 
nected by drain and source nodes. 

More formally, the definition of a component can be 
given by the following construction. Create an undirected 
graph with a vertex for each circuit node and an edge be- 
tween the drain and source node of each transistor. Next, 
split the vertices corresponding to the ground node, the 
supply (VDD) node, and the primary input nodes such that 
each of these vertices is incident on only one edge after 
splitting. A component is then a set of transistors corre- 
sponding to the edges within a connected component of 
the graph. This process is illustrated in Fig. 1. 

The input nodes of a component consist of all the gate 
nodes of transistors in the component, and any drain or 
source node of a transistor in the component that is also 
a primary input. A component’s output nodes include any 
drain or source node of a transistor in the component that 
is either a primary output, or a gate node of some transis- 
tor in the circuit. 

A technique known as Program Evaluation and Review 
Technique (PERT) [ 171 is used to compute the maximum 
overall rise and fall delays between primary inputs and 
primary outputs of the circuit. A trace-back method is then 
used to obtain the critical path, which consists of the set 
of gates that lie on the largest delay path from a primary 
input to a primary output of the combinational network. 
Two numbers th and tl are assigned to each output node 
of each component in the circuit, which correspond to the 
total rise and fall delay from the primary inputs, respec- 
tively. In addition, for each component, we compute Ah 
and A,, the Elmore delays of an RC network that corre- 
sponds to the worst-case rise and fall scenarios, respec- 
tively. Additionally, the output transition waveform is 
modeled as a function that varies linearly with time. The 
transition times of the rising and falling waveforms at the 
output of the component are taken to be 2Ah and 2A1 re- 
spectively. 

Fig. 2 shows the input waveform that triggers an output 
fall transition of an inverting gate in response to an input 
with an arrival time of th,max and transition time 7. The 
definitions of t ,  and A, for the output response are illus- 
trated in the figure; th and Ah are defined in a similar man- 
ner. 

A. Finding the Worst-case Elmore Delay 
A MOS transistor is modeled as a voltage-controlled 

switch with an on-resistance Ron between drain and source 
and three grounded capacitances c d ,  Cs, and Cg at the 
drain, source, and gate terminals, respectively. The re- 
sistance and capacitances associated with a MOS transis- 
tor of channel width x are taken to have the following 
dependence [7] on x: 

Ron 0: 1/x 

c d ,  cs, cg OC x 
The PERT technique schedules components in order for 

T 

Component 2 

(b) 
Fig. 1 .  (a) An example CMOS circuit. (b) Its component graph showing 

two components. 

Y 

I 

Vout I 

Fig. 2. Models used to represent input and output waveforms. 

in a scheduled component could be a steady logic 0, a 
steady logic 1, a logic 0 to logic 1 transition, or a logic 1 
to logic 0 transition, corresponding to a switch that is 
either ON, OFF, or in transition. The worst-case Elmore 
delay at an output node of the component must be found 
over all possible input combinations. Let o denote an out- 

evaluation. The waveform at an input node of a transistor put node of the component. The algorithm for finding the 
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worst-case fall delay at o is described below; the worst- 
case rise delay at o can be found in an analogous manner. 

The component is represented by an undirected 
weighted graph, G, with an edge between the drain and 
source nodes of each transistor in the component. Edge 
weights are given by the resistance R,, of the correspond- 
ing transistor. The VDD node and all of its incident edges 
are then removed from the graph. Let t h , m a x  denote the 
maximum value of t h  among all input nodes of the com- 
ponent and suppose this occurs at the gate node of an 
n-type transistor corresponding to an edge emax in G. It is 
assumed that the worst-case path is the largest resistive 
path (LRP) (i.e., the path of largest weight) between o 
and ground that passes through emax. This assumption is 
valid when the load capacitance at the output node is much 
greater than the internal capacitance at any node that lies 
on any path between the output node and the ground node 
through emax, as is often the case for CMOS circuits. As 
one pushes a component to its speed limit, internal node 
capacitances will no longer be small. However, since the 
capacitances that need to be driven by the component 
would probably increase, it is hoped that this assumption 
will hold. For the circuit delay specifications reported in 
this paper, it is seen in Section V that the approximation 
is valid. 

Since finding the LRP is equivalent to the longest path 
problem in a graph which is NP-hard [18], we have de- 
veloped a heuristic to perform this task. This heuristic is 
exact for series-parallel graphs, such as CMOS complex 
gates, and can be outlined as follows. 

of larger weight is called P 1 .  If the weight of P 1  is larger 
than that of P ,  then the present tree T is updated by re- 
moving any edge from Tl that belonged to P but not to 
P 1 .  Also, P is reset to P 1  and the heuristic proceeds to 
process the next link, and so on, until all links of the orig- 
inal tree have been processed. The path between o and 
ground in the final tree produced by the heuristic is re- 
ferred to as the largest resistive path (LRP). In case of 
series-parallel graphs, the heuristic does indeed generate 
the path of largest resistance from output to ground; in 
other cases (such as graphs with bridges), it gives a good 
approximation. 

Now, consider any spanning tree T, of the graph G.  If 
Pp and P ,  are the paths to ground from nodes p and q,  
respectively, in T,, let Rpq denote the resistance of the 
path Pp n P,. The Elmore delay [2] between o and the 
ground node in the RC-tree represented by T, is given by 

c Roj Cj 
j e T w  

(3) 

where Cj is the capacitance to ground at nodej  in T,. Note 
that while finding the Elmore delay, the capacitances 
which lie between the switching transistor and the supply 
rail are assumed to be at the voltage level of the supply 
rail at the time of the switching transition, and do not 
contribute to the Elmore delay. 

In order to find a tree that contains the LRP and which 
maximizes the Elmore delay, certain edges must be added 
to the LRP in such a way that Roj is maximized for every 
nodej  in the graph. The algorithm to construct the worst- 

~ 

T 

maxW = sum of weights of edges in P 
LINK = edges in G - T 
for each edge e E LINK { 

T l = T U e  
P1  = max weight o-to-ground path in Tl through emax 
W = sum of weights of edges in P ,  
i f (  W > maxW) { 

= maximum weighted spanning tree in G containing emax such 
that the path P between o and ground in T contains emax 

e’ = any edge in P - ( P  n P I )  
T = T,  - e ’ ,  P = P I ,  maxW = W 

I 
I 

The heuristic begins by finding a maximum weighted 
spanning tree T of G that contains the edge emax, using a 
variant of Prim’s algorithm [ 181. Let P’ denote the unique 
path in T between o and ground. If P’ contains emax, set 
P to P ’ ;  otherwise an edge, e T ,  is added to T such that 
T + e has a path P between o and ground through emax, 
and the e is the edge of greatest weight among all edges 
that satisfy this condition. The introduction of e creates a 
unique cycle; an edge e ’ ,  such that e’ E P’ and e’ g! P ,  is 
removed from T + e ,  to give a new initial tree T. 

The edges which are not in T constitute the set of links. 
A link is then added to the present tree T to produce a 
subgraph Tl that contains a unique cycle. Therefore, there 
can be at most two paths from o to ground in TI. The path 

case tree T, from the LRP is as follows. Initially T,  is 
taken to be the LRP itself. For a node nl g! T, the algo- 
rithm finds a node n2 E T, that is farthest from the ground 
node and is connected to nl by a path that does not inter- 
sect T,. This path is then added to T,  and the procedure 
is repeated until all nodes of G are included in the tree 
T,. The worst-case fall delay at o is then computed using 

Example I :  Consider the graph G shown in Fig. 3. As- 
sume that the LRP between the output node o and ground 
has been found to be d, e. Initially, T, is taken to be the 
LRP d, e .  Consider node nl which is connected to node 
o through several paths, one of which is j, k .  This path 
is added to T, which now becomes d, e, j, k. Note that 

(3). 
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n5v 
GND 

Fig. 3 .  Formation of a tree corresponding to the worst-case fall time 

both nodes n1 and n2 are now part of the tree T,. The 
nodes n4 and n5 are then added to the tree by adding the 
edges a and b respectively. Finally, the node 126 is added 
to the tree by adding the edge f to it. This completes the 
formation of the worst-case tree which is d, e, j, k,  a, b, 
f indicated by the bold edges in Fig. 3. If branch d cor- 
responds to the switching tansistor, the worst-case Elmore 
delay is given by 

(Rd + Re) (CO + c m  + cn, + cn, + cnl). (4) 

Finally, the value of tl for output node o is computed 
by adding th,max, the Elmore delay of the worst-case RC 
network, At, and a term [4] related to the transition time 
of the rising input at the input node corresponding to the 
worst-case Elmore fall delay. 

A more detailed description of how the effect of input 
transition time is incorporated is provided later in this sec- 
tion. This procedure is repeated for all output nodes of 
the component. 

The value of th, the worst-case rise delay at each output 
node of the component, can be found in a similar manner. 
The weighted graph representing the component is con- 
structed as before except that the ground node is removed 
instead of the VDD node. The rest of the procedure to find 
the worst-case Elmore rise delay is identical to that of the 
fall delay except that the role of the ground node is re- 
placed by the VDD node, and the roles of th and A,, are 
exchanged with those of tl and A[ in the fall delay case. 

In other delay estimators that we have come across, the 
Elmore rise and fall delays are computed directly from the 
LRP without appending additional edges to extend it to 
the worst-case RC-tree as described above. 

B. Delay Model for Components under Nonstep 
Transitions 

In [4], it has been shown that a good approximation to 
the delay, A, of a CMOS inverter under excitation from 

a nonstep input with rise time 7 ,  i.e., 

t < O  

O < t < 7  

t > T  
is given by 

where 
V , ,  = Threshold voltage of nMOS transistor 

VDD = Supply voltage 
Astep = Transition delay of the inverter under a step in- 

put excitation. 

A is defined as the difference between the time when the 
output signal crosses the v D D / 2  level, and the time at 
which input signal reaches v D D / 2 .  We model the falling 
output signal using a form similar to the input waveform 
uin in (5). The relationship between the input and output 
signals in our model, for the falling output transition, is 
shown in Fig. 2. 

A general complex gate such as the A01 gate, when 
excited by a step excitation, may be represented by an 
equivalent inverter Z whose size is determined by the El- 
more delay of the worst-case RC tree described earlier. 
For an excitation of the type in (9, we may consider the 
general complex gate as being equivalent to the inverter Z 
being excited by the same excitation. Hence, (6) also 
holds for complex gates. 

The form of the path delay under step excitations is 
described in [3]. We examine the change required in this 
form to include the effect of waveforms with nonstep tran- 
sitions as described in (9, under the assumption that the 
signal at the output of a component is modeled by a ramp 
function, as described earlier in this section. 

Let Ai,step refer to the delay of component i on a path 
of the circuit, with all input waveforms having step tran- 
sitions. The delay of the circuit, Delaystep, is given by 

I 

Delaystep = A1,step + &,step + * * + An,step. (7) 
When we incorporate the effect of the transition time, and 
add the simplifying assumption that the magnitude of the 
threshold voltage is the same for nMOS and PMOS en- 
hancement mode transistors, the delay along the path is 
given by 
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where 

Delayk = circuit delay up to k th 
component from primary inputs 

threshold voltage (assumed equal 
in magnitude for 
nMOS, PMOS for simplicity) 

n - k  c C Y i .  
i = O  

Thus, the delay is expressed by the weighted sum of 
the Ai,step values. Since each of the Ai,step expressions is 
posynomial [3], and the wi's are constant, the expression 
for delay along a path under excitations with nonstep tran- 
sitions is a posynomial. 

In the case where the threshold voltage, V ,  is different 
in magnitude for n- and p-type transistors, the form of (8) 
remains the same, but the expression for the wk's is more 
involved. In this work, we have assumed that the mag- 
nitude of the threshold voltage is the same for n- and 
p-type transistors. 

As will be shown in Section V, the delay times calcu- 
lated by our estimator are in good agreement with SPICE 
results. 

C. Area and Delay Functions 
Let n denote the number of transistors in a combina- 

tional circuit and let x = [xl, x2, , x,] be an 
n-dimensional vector of the transistor sizes. The total area 
of the circuit is taken, for simplicity, to be the sum of the 
transistor sizes, i.e., 

n 

Area(x) = xi. (9) 
i =  1 

Note that the area function is a posynomial in x. 
The equation for the overall delay Delay(x) through the 

critical path, using our gate-delay model, has been shown 
to be a posynomial of the form 

n 

Delay(x) = y, ,IT xgv 
j i = 1  

where 

yj 2 0, cyij E {-1, 0, l} vi  = 1, 2, * - , n. 
Also, aij may be -1 only for critical transistors, i.e., 
transistors that lie in the LRP of a component on the crit- 
ical path. This is because the delay is expressed as a sum 
of RC products. The only transistors that contribute terms 
with an exponent of ' - 1 ' to these RC products are those 
that act as resistances, i.e., the critical transistors. Any 

other transistor may either contribute a term with expo- 
nent 'l ' , when it acts as a capacitance, or may make no 
contribution to the RC product. 

111. THE CONVEX PROGRAMMING ALGORITHM 
The objective of the algorithm is to solve the following 

transistor sizing problem 
n 

minimize Area(x) = xi 
i =  1 

subject to Delay(x) I TsFc (1 1) 

where the delay Delay(x) is maximum of delays along all 
paths to a primary output node of the circuit. By making 
the variable transformation 

(Xi) = (eL) 

the original transistor sizing problem (1 1) of minimizing 
a posynomial area function over posynomial constraints 
becomes 

n 

minimize Area(z) = ,e e'' 
r = l  

subject to D(z) I TsP. (12) 

The other formulations mentioned in the introduction, 
namely, minimizing the delay subject to area constraints, 
minimizing the area-delay product, or a formulation that 
involves the area, delay and power dissipation, can also 
be handled by this algorithm. However, since the above 
formulation is the most practically useful one, we restrict 
our discussion to this formulation. 

Note that under this transformation, the delay along a 
path has the form 

i yi exp ( 5  i =  1 a,,,> 

which is a convex function. Since the circuit delay is de- 
fined to be the maximum of all path delays, and the max- 
imum of convex functions is also convex, D(z) is a con- 
vex function. It can be seen that Area(z) is also a convex 
function of z. Hence, (12) is a convex programming prob- 
lem of minimizing a convex function over a convex set of 
constraints. 

The algorithm proposed by Vaidya in [16] provides an 
efficient technique for solving (12). Define thefeasible set 

S = {Z E R": D(z) I Tsp}  (13) 

and let zOpt be the solution to (12). Initially, a polytope P 
that contains zOpt is chosen. It is of the form 

(14) 
where A E R" and b E R". Here, m denotes the number 
of linear inequality constraints describing the polytope. 
The initial polytope P, for example, may be selected to 
be an n-dimensional box describing the set 

P = {z: Az 2 b} 

{z: loge (Xmin) I ~i 5 loge (Xmax>> (15) 
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where xmin and xmax are the user-specified minimum and 
maximum allowable transistor sizes, respectively. Thus, 
this system naturally incorporates upper and lower bound 
constraints on transistor sizes. 

The algorithm proceeds iteratively as follows. First, a 
center z, deep in the interior of the current polytope P is 
found by using a technique which will be described later. 
Next, an oracle is then invoked to determine whether or 
not the center z, lies within the feasible region S. From 
the definition of S, the oracle is simply a routine that in- 
vokes the delay estimator described in Section 11, with the 
transistor sizes xi = e''.', to determine whether or not the 
delay requirement is met. If the point z, lies outside S, it 
is possible to find a separating hyperplane passing through 
z, that divides the polytope P into two parts, such that S 
lies entirely in the part satisfying the constraint 

cTz I p (16) 

c = - [VD,ritpattl(z)l (17) 

where 

is the negative of the gradient of the critical path delay 
(constraint) function, and 

p = cTzc. (18) 
The separating hyperplane described above corresponds 
to the tangent plane to the path delay along the critical 
path. Note that the discontinuity of the derivative of the 
circuit delay function does not affect matters, since we 
only deal with the gradient of a path delay, which is a 
continuous function. 

If the point z, lies within the feasible region S, then 
there exists a hyperplane that divides the polytope into 
two parts such that zOpt is contained in one of them satis- 
fying the constraint (16) with 

c = -[VArea(z)lT (19) 
being the negative of the gradient of the area (objective) 
function, and 0 is once again defined by (18). In either 
case, the constraint (16) is added to the current polytope 
to give a new polytope that has roughly half the original 
volume. The process is repeated until the polytope is suf- 
ficiently small. 

Since this is the first practical implementation of this 
convex programming algorithm on problems of the size 
that we have handled, our work addresses several issues 
that were inconsequential to previous implementations that 
worked with a smaller number of variables. Hence, a de- 
scription of some of the practical issues involved is pro- 
vided in some detail in this section. 

Example 2: Consider the problem 

minimize f (n, , x2)  

s.t. (XI, x2) E S 

where S is a convex set and f is a convex function. The 
shaded region in Fig. 4(a) corresponds to S, and the dot- 
ted lines show the level curves of the functionf. The point 

. .  . .  

..... .... , 

Fig. 4. An example to illustrate the convex optimization algorithm. 

x* is the solution to this problem. The procedure begins 
by bounding the expected solution region by a closed 
polytope, which corresponds to a rectangle in two dimen- 
sions. This is shown in Fig. 4(a). The center, z, of this 
rectangle is found. The oracle is invoked to determine 
whether z, lies within the feasible region or not; in this 
case it can be seen that z, lies outside the feasible region. 
Hence, the gradient of the constraint function is used to 
pass a hyperplane through z,, such that the polytope is 
divided into two parts, one of which contains the solution 
x*. This is illustrated in Fig. 4(b), where the shaded re- 
gion corresponds to the polytope containing the solution. 
The process is repeated on this new smaller polytope. Its 
center lies inside the feasible region, and hence the gra- 
dient of the objective function is used to generate a hy- 
perplane that further shrinks the size of the polytope, as 
shown in Fig. 4(c). The result of another iteration is il- 
lustrated in Fig. 4(d). The process continues until the 
polytope has been shrunk sufficiently. 

It can be seen that the key parts of this algorithm are: 
1) finding the center z, of the existing polytope P ,  
2) generating gradient functions in (17) and (19) above, 

3) deciding when to terminate the algorithm. 

I 

and 

A .  Procedure for Finding the Center of the Polytope 
We would like to find a point inside a polytope that 

satisfies the property that any separating hyperplane drawn 
through it divides the original polytope into two parts of 
approximately equal volume. Finding such a point is dif- 
ficult [ 161, and so we settle for finding a point that is rea- 
sonably deep within the interior of the polytope, and can 
be found through relatively inexpensive computation. 

Consider a polytope P defined by (14), and let a[ be the 
i th row of the m X n matrix A ,  and bi be the i th element 
of the m-dimensional vector b.  The center z,, is taken to 
be the vector that minimizes the following log-barrier 
finction 

' 

m 

F(Z) = - ,Z log, (a[z - bi). (20) 
r = l  
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Note that near the boundary of the polytope, F(z)  tends to 
infinity and its value decreases as one moves deeper into 
the interior of the polytope. Also, the value of F(z) is 
undefined outside the boundary of the polytope. More- 
over, F is a convex function of z E P ,  with a 1 X n gra- 
dient vector 

I .  Method 1: The Hessian at zk may be written as 

H(zk) = v2F(zk) 
m 

(26) 
aiar = c  = ATAA 

i =  I (arzk - bi)2 

where A is a diagonal matrix. 
m - 

af 
VF(z) = - c 

i = 1 (a[z - bi) 

and an n X n Hessian matrix 

Since the initial polytope is a box, its center is easy to 
find. At each subsequent iteration, a constraint of the form 
cTz 1 fl is added to the previous polytope whose center 
is found iteratively using the Newton's method [19] as 
follows. The initial point zo for the Newton's method is 
found by moving halfway to the closest boundary in the 
direction c. The initial point zo thus obtained is guaran- 
teed to be in the interior of the new polytope. 

The Newton's method for finding the center z, then 
generates iterates of the form 

(23) z k +  1 = zk + t*'$k 

for k = 0, 1, 2,  * * 

Newton direction at zk given by 
, until convergence, where t k  is the 

= -[v 2F(zk)]-'[vF(zk)]T (24) 

and t* is the point that minimizes the one-dimensional 
function 

+(t) = F(zk + t t k )  (25) 

and is obtained by performing a one-dimensional line- 
search. 

Note that the process of computing a Newton direction 
by (24) involves the inversion of an n X n Hessian matrix 
which takes O(n3) time and can prove to be rather expen- 
sive. This expense can be cut down by maintaining the 
inverse of an approximate Hessian fi via rank-one updates 
[19] as described pelow, and by using an approximate 
Newton direction '$k instead of '$k in the line search. We 
note that using an approximate Newton direction instead 
of the exact one essentially does not affect the conver- 
gence properties of the center-finding algorithm [ 161. 

B. Rank-One Updates 
Let zk be the point at the beginning of the ( k  + 1)th 

iteration of Newton's method for finding the center z, of 
the polytope P described by (14) .  

Two methods for maintaining the approximate Hessian, 
using rank-one updates [19] are outlined below. 

Let 62 > 0 be small parameters. An approximate 
( 2 1 )  Hessian is given by 

= A T h  (27) 

where a E R" is a diagonal matrix such that at theAStart 
of the ( k  + 1)th iteration, the ith diagonal entry of A, A,, 
satisfies the condition 

(a:zk-I - b,)-26;' I A,, 5 (ai'zk-1 - b,)-26* 

V 1 1 i l m .  (28) 

We maintain an approximate inverse Hessian, E-'; the 
following rank-one correction procedure is used to update 
X-' at the beginning of the ( k  + 1)th iteration. 

, m { 
if (A,, < (arzk - b,)-26;1) or 

For each i = 1, 2 ,  * 

(A,,  > (a[zk - b,)-262) then { 
w = (air,k - b,)-2 - A,, 
A,, = (arz, - b,)-2 
e = X - ' a i  
p = w(1 + ware)-' 
x-I = x-I - peeT 

1 
1 
One of two schemes may be used to calculate the ap- 

Scheme (a): Maintaining a more accurate % - I ,  and set- 
proximate Newton direction. 

ting 

It can easily be verified that each rank-one update to X-' 
is of complexity O(n2). Typically, the number of updates 
to a per iteration is less than O(&) and this reduces the 
average cost of an iteration of the center finding algorithm 
from 0 ( n 3 )  to O(n2 7. 

Scheme (b): Maintaining a more approximate X-', and 
using it as a preconditioner for a preconditioned conjugate 
gradient method [20] that solves 

$ k  = -X-l(VF(zk))T.  (29) 

Hgk = -(vF(Zk))T. (30) 
This method trades off the cost of maintaining X-' ac- 
curately against the cost of performing a few iterations of 
the preconditioned conjugate gradient method. 

For Scheme (a) for maintaining an approximate inverse 
Hessian described above, the parameter above is typi- 
cally chosen to be around 1.5, while a2 may be set to 
about 5 ,  while for Scheme (b), typical values for 61 and 
h2 are 3 and 20 respectively. 

The reason why 62 is set to be larger than 6' is as fol- 
lows. When w is positive (i.e., when A2 determines 
whether an update is to be made or not), the denominator 
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of p is relatively large, and hence numerical errors in the 
calculation of p are damped out. In the case where w is 
negative (i.e., the update decision is dependent on the 
values of A1), the denominator of p grows smaller as 61 
increases, and a large 61 could lead to an amplification of 
numerical errors. small. Therefore, the choice of 62 may 
be more liberal than that of 

In each of these two methods, it suffices to maintain 
E-'; it is not even necessary to explicitly find H. 

2 .  Method 2: The Hessian at zk may also be written as 

H = I' + UTQU. (31) 

Let p be the number of additional planes added to the 
initial polytope, the box, described by (15). I' E R"'" is 
the Hessian at zk due to the planes of this box only, and 
is a diagonal matrix. The ith diagonal element of r, de- 
noted yS, is given by 

- 2  - 1  1 Ytr = [ k k r  - Z r n ~ n I - ~  + k m a x  - Z k , r l  

The rows of U T  E Rp ' " correspond to the planes added 
to the initial polytope, i.e., the (2n + 1)th to the mth rows 
of AT. Cl E R p x p  is a diagonal matrix, whose diagonal 
entries correspond to the last p diagonal entries of the ma- 
trix A in (26). 

We may now write 

H - 1  = r-1 - r-lu[Q-l + ~ ~ r - ~ u ] - ~ u ~ r - I  (32) 

(33) 

We maintain an approximation e-' to C-I. An ap- 

(34) 

As in Method 1 ,  it suffices to maintain the approximate 
inverse of C;  it is not necessary to explicitly store C itself. 
The approximate Hessian or the approximate inverse Hes- 
sian are never explicitly maintained; the search direction 
is found by computing 5 = - x - ' [ V F ( z , ) l T ,  which in- 
volves multiplication of (34) for X-' by a n X 1 vector. 
The cost of this computation can be seen to be O(np) (if 
n >> p ) ,  i.e., the number of added planes is much less 
than the problem dimension. This is seen to be the case 
for large problems, and hence the use of this method 
would speed up the computation substantially for large 
problems. 

If the number of additional lanes, p has not changed 
since the last calculation of e-', all that needs to be done 
to get the new C-' is a set of rank-one updates. If a new 
plane has been added, a method outlined in [21] may be 
used to update e-'. The method involves a rank-one up- 
date and a few additional operations to incorporate the 
effect of the newly-added plane. As before, one of two 
schemes may be used to calculate the approximate New- 
ton direction: 

- - r-1 - r-luc-luTr-1 
where C = 0-l + UTF-'U.  

proximate inverse Hessian is then given by 
x-1 = r-1 - r-1,ye-lUTr-l 

a) Maintaining a more accurate CY1, and setting 

i k  = - X - l ( V F ( z , ) ) T .  (35) 

b) Maintaining a more approximate e-' ,  and using it 
to as a preconditioner for a preconditioned conju- 
gate gradient iteration that solves 

H{k = -(vF(Z,))T. (36) 

It may be noted that the preconditioned conjugate gra- 
dient does not need an approximate H or 3 t - I  explicitly, 
but multiplies X-' by a n X 1 vector; we have already 
seen that this operation is computationally cheap when p 
is small. 

It was found experimentally that Scheme (b) of Method 
2 gave the best overall results for the problems that we 
worked on. 

C. One-Dimensional Line Search 
Once the Newton direction Ek of (24) has been found, 

the value of t*  that minimizes the one-dimensional func- 
tion 4( t )  defined by (25) is obtained as follows. First, the 
allowable values o f t  are bounded by tmin and tmax, where 
tma, is found by computing the distance from the point zk 
to the nearest boundary of the polytope along the t k  di- 
rection. The derivative of 4 in the interval [0, tmax] can 
be shown to be 

m 

where si = aTtk and ri = a:zk - bi for each i = 1, 2 ,  
, m. Note that 

4'(0) = vF(zk) * E k  

= -VF(Z,) * H-'  [VF(zk)lT < O (38) 

since the Hessian of F,  a convex function is positive def- 
inite. Also, 

lim +'(t)  > 0. (39) 
t + fmax 

As a result of (38) and (39), and since the function 4 is 
convex in the interval [tmin, t,,,], tmin can be set to 0, and 
a simple bisection search can be used to find t* at which 
$'(t*) = 0 as follows: 

repeat { 
t* = (tmin + t m a x ) / 2  
if (+'(t*) and 4'(tmin) are of opposite sign) 

else 
t,,, = t" 

t .  = t *  min 

1 
until ( 1  4'(t*) 1 < E )  

where E is a small positive number. 

D. Generation of Hyperplanes 
When the center z ,  of a polytope lies within the feasible 

region S, the gradient of the area function is required to 
generate the new hyperplane passing through the center. 
The area function of (12) has a gradient at the point z 
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given by 

VArea(z) = [e", e n ,  * , e'"] (40) 

In the case when the center z, lies outside the feasible 
region S, the gradient of the critical path delay function 
Dcritp.&c) defined by (10) is required to generate the new 
hyperplane that is to be added. For each k = 1, 2, * - , 
n, the kth component of the required gradient vector at a 
point z is given by (see (10)) 

[VDcritpath(Z)lk = r j a k j  exp (i$l aczi). (41) 

Note that the transistors in the circuit can contribute to 
the kth component of the gradient of the delay function 
in either of two ways: 

a) If the kth transistor is critical i.e., it lies on the LRP 
of a component on the critical path of the circuit), 
or 

b) if the kth transistor is a capacitive load for some 
critical transistor. 

Transistors that satisfy neither of these two require- 
ments have no contribution to the gradient of the delay 
function. 

E. Termination Criterion 
The algorithm should be terminated when the volume 

of the final polytope is sufficiently small. In practice, near 
the optimum, the polytope becomes flat in the direction 
normal to the gradient of the area. A practical termination 
criterion uses this property. 

From the current center, zc, let zl and z2 be the two 
nearest points on the boundary of the polytope, in the di- 
rection of the positive and negative gradient of the area 
respectively. The difference between the area of the cir- 
cuit corresponding to the transistor sizes at z1 and z2 pro- 
vides a measure of the flatness of the polytope in the di- 
rection of the area gradient. Hence, the termination 
criterion is taken to be 

(42) 
I Area@ - Area(z2) I 

Area@,) 
< E  

where E is a small user-specified number (a reasonable 
default value is 0.01). 

IV. EXTENSION TO SEQUENTIAL CIRCUITS 
For sizing sequential circuits, it is first required that 

latches in the circuit be identified. Next, the combina- 
tional subcircuits that lie between these latches are ex- 
tracted, and the delay constraint for each of these subcir- 
cuits is computed. For each subcircuit, the transistor 
sizing problem is solved by minimizing the area of the 
subcircuit, while ensuring that its delay requirement is 
satisfied. 

The task of identifying latches proceeds as follows. The 
circuit is represented by a graph, G, with vertices corre- 
sponding to components, and with edges drawn from a 

component to each component that it fans out to. Feed- 
back loops in the circuit (e.g., cross-coupled NAND gates), 
which manifest themselves as strongly connected com- 
ponents in this graph, are identified using Tarjan's algo- 
rithm [22] .  

Next, each clock signal is traced from the primary in- 
puts, proceeding from a component to each of the com- 
ponents that it fans out to, until the signal intersects either 
a feedback loop or a transmission gate. Such a feedback 
loop or transmission gate is identified as a latch. Thus, 
this procedure identifies latches which are clocked not 
only by clock signals at the primary input, but also by 
qualified clock signals. 

All latches are then removed from the circuit. In case 
of transmission gate latches, this could result in a single 
component being bronken up into two or more compo- 
nents. A new graph G is formed, in the same way as G2 
to represent this new circuit. A breadth-first search of G 
can detect strongly connected components of this new cir- 
cuit; each such strongly connected component corre- 
sponds to a combinational subcircuit that lies between a 
set of input latches and a set of output latches. From the 
clock arrival times at these latches, the timing require- 
ments for the combinational subcircuits can be found. 

V. EXPERIMENTAL RESULTS 
The algorithm described in the previous sections have 

been implemented in iCONTRAST (illinois Convex Op- 
timization-based Novel TRAnsistor Sizing Tool). The 
program, written in C, now consists of approximately 
6000 lines of code. 

The input to the program is a SPICE deck that gives a 
transistor-level netlist of the circuit. In the preprocessing 
stage, the circuit is first divided into channel-connected 
components. Next, latches in the circuit are identified. 
The circuit is divided into combinational subcircuits that 
lie between latches, and the delay constraints for each such 
subcircuit are determined. The main body of the proce- 
dure carries out a convex optimization on each combina- 
tional subcircuit. 

It must be mentioned here that for our experimental re- 
sults, the approximate Hessian for finding the Newton di- 
rection was maintained using Scheme (b) of Method 2 de- 
scribed in Section 111. 

A set of test circuits described in Table I were used to 
evaluate the performance of iCONTRAST. The entries 
under unsized area and unsized delay correspond to the 
area and delay when all transistors in the circuit are set to 
the minimum size. In case of the sequential circuit, the 
delay refers to the maximum stage delay for the circuit. 
It may be noted that the word 'area' refers to the sum of 
transistor sizes. The technology parameters used here cor- 
respond to a submicron technology. The number of iter- 
ations for each circuit were of the order O(n).  For these 
circuits, the initial polytope was taken to be a box with 
the minimum transistor size being 1.8, and the maximum 
size being 500. 
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TABLE I 
CIRCUITS USED TO EVALUATE iCONTRAST 

Circuit Description # Transistors 

Inv6 
InvlO 
Tree 
Add2 
Add8 
Add32 
Seq 

6-inverter Chain 
10-inverter Chain 
Tree of NAND gates 
2-bit Adder 
8-hit Adder 
32-bit Adder 
Sequential circuit 

12 
20 
28 
52 

208 
832 
244 

Unsized Area ( pm) Unsized Delay 

21.6 7.0 ns 
36.0 12.6 ns 
50.4 4.0 ns 
93.6 24.2 ns 

374.4 109.8 ns 
1497.6 452.5 ns 
439.2 26.9 ns 

TABLE I1 
RESULTS ON SIZING VARIOUS CIRCUITS USING iCONTRAST 

Circuit TS,, Sized Area ( pm) Execution Time # Iterations Memory Requirement 

Inv6 5.0 ns 
4.0 ns 
3.0 ns 
2.0 ns 

InvlO 10.0 ns 
8.0 ns 
6.0 ns 
5.0 ns 
4.5 ns 

Tree 3.5 ns 
3.0 ns 
2.5 ns 
2.0 ns 
1.5 ns 

Add2 18.0 ns 
15.0 ns 
12.0 ns 
10.0 ns 
8.0 ns 
7.0 ns 

Add8 100.0 ns 
80.0 ns 
60.0 ns 
40.0 ns 

Add32 350.0 ns 
250.0 ns 
200.0 ns 

Seq 20.0 ns 
15.0 ns 
10.0 ns 

29.2 
40.9 
12.2 

244.8 

45.2 
62.3 

110.2 
177.4 
251.0 

58.8 
74.8 

104.5 
174.7 
407.0 

114.3 
132.0 
167.3 
198.6 
247.1 
459.6 

414.6 
491.1 
692.9 

1430.3 

1909.5 
2866.5 
4329.6 

498.5 
633.9 

1125.8 

1.2 s 
1.7 s 
2.0 s 
2.9 s 

2.5 s 
2.4 s 
4.1 s 
5.2 s 
6.6 s 

11.8 s 
12.3 s 
14.1 s 
18.3 s 
20.6 s 
33.5 s 
34.0 s 
45.9 s 
60.7 s 

101.6 s 
160.3 s 

18.2 m 
12.3 rn 
11.4 m 
41.7 m 

420.9 m 
456.9 rn 
543.5 m 

169.6 s 
258.7 s 
429.4 s 

26 
31 
34 
39 

31 
33 
50 
59 
62 

53 
64 
76 
93 

108 

71 
74 
79 
89 

115 
143 

147 
179 
236 
27 1 

595 
545 
538 

86+ 
89' 

105' 

648 KB 
652 KB 
656 KB 
660 KB 

812 KB 
816 KB 
848 KB 
860 KB 
856 KB 

796 KB 
784 KB 
820 KB 
836 KB 
880 KB 

1.6 MB 
1.5 MB 
1.5 MB 
1.6 MB 
1.7 MB 
1.8 MB 

4.4 MB 
5.7 MB 
5.7 MB 
6.0 MB 

11.1 MB 
11.1 MB 
11.2 MB 

3.0 MB 
3.1 MB 
3.2 MB 

+The largest number of iterations for a combinational subcircuit 

Table I1 shows the area of the circuit after it has been 
sized by iCONTRAST to meet a delay specification, Tspec, 
and the execution time on a Sun SPARCstation I. Since 
our method solves the underlying convex programming 
problem exactly, the areas shown here correspond to the 
globally optimum solution to the transistor sizing prob- 
lem, with an accuracy that is dictated by the tightness of 
the user-specified termination criterion. The number of 
iterations, and the memory requirement for each circuit 
are also shown. In case of the sequential circuit, Seq, the 
number of iterations corresponds to the maximum number 
of iterations required to size any combinational subcir- 
cuit. 

Consider, for example, the results on the example cir- 
cuit, Add8. As seen in Table I ,  the unsized area and delay 
for this circuit are 374.4 pm, and 109.8 ns respectively. 

The area penalty required to achieve a relatively loose de- 
lay specification such as the first one, 100 ns, is not very 
large; the active area of the sized circuit is only 1 1  % larger 
than the unsized circuit. As the delay specification be- 
comes tighter, the area penalty increases non-linearly ; to 
achieve a delay specification of 40 ns, the active area of 
the sized circuit is 182% larger than that of the unsized 
circuit. A similar trend is visible for each of the other 
example circuits in Table IT. 

The number of iterations and the memory requirement 
are seen to increase slightly in most cases with the tight- 
ness of the delay specification. For the largest circuit, 
however, the number of iterations is seen to be roughly 
independent of the delay specification. 

None of these results violates the theoretical prediction 
that the order of magnitude of the number of iterations for 
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a given circuit is dependent only on the size of the initial 
polytope (which was the same for all circuits) and is in- 
dependent of the delay specification. The basis for this 
prediction lies in the fact that the volume of the polytope 
is roughly halved in each iteration; hence, the volume of 
the polytope containing the solution is roughly the same 
after the same number of iterations, regardless of where 
the solution lies within the initial polytope. 

In a comparison with the optimization algorithm of 
TILOS [3], [6], [23], using the same delay models for 
both algorithms, it was found that when the delay speci- 
fication was loose, the area of the TILOS-sized circuit 
was close (within a few tenths of a percent) to the optimal 
one obtained using the CONTRAST algorithm. How- 
ever, as the delay specification was made tighter, it was 
observed that the TILOS solution moved away from the 
optimal one; in some cases, the area achieved by 
iCONTRAST was under 1 /3 that given by TILOS [23]. 
In comparison with TILOS, both the CPU time and the 
memory requirements were found to be larger; however, 
the improvement in the quality of the solution provided 
by iCONTRAST could be considerable, since the global 
optimum is guaranteed by this algorithm. 

Fig. 5 shows the variation of transistor sizes in a 7-stage 
inverter chain. The minimum transistor size allowed here 
is 1.8 pm. The load that is driven by the chain corre- 
sponds to an inverter of Wp/  W,, = 50 pm/50 pm. This 
problem has exactly two paths between the primary inputs 
and the primary output; the delay along both paths, i.e., 
the rise and the fall delays at the output node, are equal 
after sizing, as expected. For relatively loose delay spec- 
ifications, it is seen that only the last stages are made 
larger, while those towards the input remain relatively un- 
affected. As Tspec (given in ns) is made tighter, it is seen 
that in addition to affecting the transistors at the‘ output 
stages, the sizes of the transistors that are closer to the 
input are also significantly increased. The sizes of tran- 
sistors in the input stage are restricted by the contribution 
of the user-specified resistance of the source that drives 
the first stage. The variation of sizes in the n-transistor 
stages is illustrated in Fig. 5(a); the variation of 
p-transistor sizes, shown in Fig. 5(b), follows the same 
trend as the n-transistor stages. 

It should be noted that in this circuit, since the number 
of n-transistors (p-transistors) in the two paths is not 
equal, the nature of the variation in transistor sizes is 
somewhat different from a circuit such as an 8-inverter 
chain, which has equal numbers of n-transistors (p-tran- 
sistors) on each path. The disparity stems from the fact 
that the equivalent resistance of an n-transistor is different 
from that of a p-transistor of equal size. To illustrate this, 
note that the path with the larger unsized delay goes 
through p-transistors 1, 3, 5 and 7. Hence, in the sized 
circuit, where both path delays are equal, it is seen that 
p-transistors 3 and 5 contribute to the disruption of the 
smoothness of the curve by being larger than their inter- 
polated values. Transistors 1 and 7, being at the primary 
input and primary output respectively, are influenced by 
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Fig. 5 .  (a) Variation of  p-transistor sizes for a seven-inverter chain. (b) 

Variation of  n-transistor sizes for a seven-inverter chain. 

other considerations (namely, the input resistance and the 
output capacitance, respectively), and therefore, such ef- 
fects are not visible. 

However, a caveat is in order here: the above consid- 
erations are not the only reason for nonsmoothness of the 
curve, the curve for an 8-inverter chain is seen to be non- 
smooth too. Also, one should curb an instinctive tendency 
to compare these variations with the smooth exponential 
variations of Mead and Conway [24], since the two prob- 
lems are not the same. The Mead-Conway problem prin- 
cipally differs from ours in the following respects: 

a) The objective of their problem is to minimize the 
number of stages and the circuit delay. In our prob- 
lem, the circuit topology, and hence, the number of 
stages is fixed. 

b) The Mead-Conway approach uses a simpler delay 
model. 

Finally, the performance of iCONTRAST’s delay es- 
timator on a chain of 8 inverters (Inv8), a complete binary 
tree of seven 2-input NAND gates (Tree), and a 2-bit adder 
using complex gates (Add2), in relation with SPICE delay 
values, is shown in Figs. 6, 7 and 8, respectively. To 
illustrate the improvement provided by the enhancements 
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Fig. 7 .  (a) iCONTRAST delays versus SPICE delays for circuit Tree. (b) 
Elmore delay (without CONTRAST’S enhancements) versus SPICE de- 
lays for circuit Tree. 
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considering the effects of capacitances that do not lie on 
the LRP. The various SPICE delay values correspond to 
a different set of transistor sizes in the circuit. For the 
circuits Inv8 and Tree, where the individual gates are in- 
verters and NAND gates, respectively, the values are in ex- 
cellent agreement. For a circuit like Add2 that is com- 
posed of complex gates, the accuracy can be seen to 
deteriorate slightly, but remains close to SPICE. It is clear 
from the data displayed here that the enhancements in our 
algorithm provide a considerable improvement. 

VI. CONCLUSION 
In this paper, we have presented a convex programming 

approach to solving the transistor sizing problem. This 
approach is guaranteed to find the global minimum solu- 
tion to the problem. Any of the commonly-specified forms 
of the transistor sizing problem can be handled by this 
approach; we have illustrated the algorithm on the most 
useful form, given in (1). A major advantage is that the 
delay constraints do not need to be explicitly stated. En- 
suring that the delay of the circuit satisfies the specifica- 
tion, is equivalent to ensuring that the delay along each 
path of the circuit satisfies the specification; since the 
number of paths in the circuit could be exponentially 
large, the number of constraints could be exponential in 
number. A conventional technique, such as Lagrangian 
multipliers, would not be able to solve a problem with 
such a large number of constraints in a reasonable time. 
The complexity of the algorithm is dependent on the num- 
ber of variables, the size of the initial polytope, and the 
termination criterion, but is independent of the number of 
convex constraints. Moreover, the discontinuities in the 
circuit delay function, caused by its definition as the max- 
imum of all path delays, do not require special treatment 
from the algorithm as in many other transistor sizing al- 
gorithms such as [7]. 

A new delay estimation algorithm, that takes waveform 
slopes into account and calculates the worst-case delays, 
is also presented. Experimental comparisons with SPICE 
show that the enhancements made by this approach over 
previous approaches afford a large improvement in the 
quality of the solution. 

The algorithm was implemented as a C program on a 
SUN Sparcstation I, and results on purely combinational 
circuits with up to 832 transistors, and on a sequential 
circuit, have been presented here. 

I 
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Fig. 8. (a) iCONTRAST delays versus SPICE delays for circuit Add2. (b) 
Elmore delay (without iCONTRAST’s enhancements) versus SPICE de- 
lays for circuit Add2. 

of our algorithm, a comparison is provided with the delay 
obtained by a simple summation of component Elmore 
delays, without considering input slopes, and without 
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