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Abstract: 

This comprehensive review summarizes state-of-the-art, challenges and prospects of the neuro-inspired 

computing with emerging non-volatile memory devices. First, we discuss the demand for developing neuro-

inspired architecture beyond today’s von-Neumann architecture. Second, we summarize the various 

approaches to designing the neuromorphic hardware (digital vs. analog, spiking vs. non-spiking, online 

training vs. offline training) and discuss why emerging non-volatile memory is attractive for implementing 

the synapses in the neural network. Then, we discuss the desired device characteristics of the synaptic 

devices (e.g. multilevel states, weight update nonlinearity/asymmetry, variation/noise), and surveyed a few 

representative material systems and device prototypes reported in the literature that show the analog 

conductance tuning. These candidates include phase change memory, resistive memory and ferroelectric 

memory and floating-gate transistors, etc. Next, we introduce the crossbar array architecture to accelerate 

the weighted sum and weight update operations that are commonly used in the neuro-inspired learning 

algorithms, and review the recent progresses of array-level experimental demonstrations for pattern 

recognition tasks. In addition, we discuss the peripheral neuron circuit design issues and present a device-

circuit-algorithm co-design methodology to evaluate the impact of non-ideal device effects on the system-

level performance (e.g. learning accuracy). Finally, we give an outlook on the customization of the learning 

algorithms for efficient hardware implementation.  

Keywords:  

Neuromorphic computing, neural network, machine learning, hardware accelerator, non-volatile 

memory, resistive memory, synaptic device  

 

1. Introduction 

Artificial intelligence (AI) that allows machines to think and act like human beings is reviving, which is a 

hot topic today not only in academia but also has made remarkable social impact (e.g. Google’s AlphaGo 

[1]). In recent years, artificial neural networks (i.e. machine/deep learning) has shown significantly 

improved accuracy in large-scale visual/auditory recognition and classification tasks, some even surpassing 

human-level accuracy [2]. In particular, convolutional neural network (CNN) [3] and recurrent neural 

network (RNN) [4] algorithms and their variants have proved their efficacy in a wide range of image, video, 

speech, and biomedical applications. To achieve incremental accuracy improvement, state-of-the-art deep 

learning algorithms tend to aggressively increases the depth and size of the neural network. For example, 

Microsoft’s Residual-Net (which won the ImageNet 2015 image classification competition [5]) has more 

than one hundred of layers [6]. This poses significant challenges for hardware implementations in terms of 

computation, memory, and communication resources. For example, Google’s stacked autoencoder 

algorithm was able to successfully identify faces of cats from 10 million random images taken from 

YouTube videos [7]. Yet this task was accomplished on a cluster of 16,000 processor cores consuming 

~100 kW power and used three days to train the network.  
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Today’s deep learning is typically trained with graphic processing unit (GPU) accelerators on the data 

center or cloud side. Specific designed accelerators such as Manchester’s SpiNNaker [8], Heidelberger’s 

BrainScaleS [9], and Google’s tensor processing unit (TPU) [10] have been developed to run large-scale 

neuromorphic and/or deep learning algorithms. On the embedded system or Internet of Tings (IoT) edge 

computing side, such as autonomous driving, smart sensors and wearable devices, severe constraints exist 

in performance, power and area. Several application-specific integrated circuits (ASIC) on-chip solutions 

in silicon complementary-metal-oxide-semiconductor (CMOS) technology such as IBM’s TrueNorth [11], 

MIT’s Eyeriss [12] and a series of CNN accelerators [13, 14, 15] have been developed. However, limitations 

still exist on on-chip memory capacity, off-chip memory access, and online learning capability. In particular, 

the CMOS ASIC designs show that on-chip memory is the biggest bottleneck for energy-efficient real-time 

computing, which means storing millions of parameters and loading/communicating them to the place 

where computing actually occurs. Today’s neuromorphic chips or ASIC accelerators typically utilize static 

random access memory (SRAM) as the synaptic memory on-chip. Although SRAM technology has been 

following the CMOS scaling trend well, the SRAM density (100-200 F2 per bit cell, F is the technology 

node) and on-chip SRAM capacity (typically a few MB) are insufficient for storing the extremely large 

number of parameters in deep learning algorithms (typically hundreds of MB). Leakage current is 

undesirable, and parallelism is limited due to the row-by-row operation in the digital SRAM array.  

As an alternative hardware platform, emerging non-volatile memory (eNVM) devices have been proposed 

for on-chip weight storage with higher density (typically 4-12 F2 per bit cell) and fast parallel analog 

computing with low leakage power consumption [16]. A special subset of eNVM devices that show 

multilevel resistance/conductance states could naturally emulate synaptic device in the neural network, 

namely resistive synaptic devices [17]. Examples of resistive synaptic devices include the two-terminal 

eNVMs such as phase change memory (PCM), resistive random access memory (RRAM) and the three-

terminal ferroelectric transistor and floating-gate memory (with analog threshold voltages). The parallelism 

of resistive crossbar array for matrix-vector multiplication (or dot product) further enables significant 

acceleration of core neural computations (i.e. weighted sum). A recent analysis by IBM showed that fully-

connected multi-layer perceptron (MLP) can be potentially trained faster with lower power consumption 

with PCM based accelerators than with the conventional GPUs [18]. With optimized device specifications, 

the eNVM based accelerators could potentially outperform the silicon CMOS ASIC based ones with SRAM 

synaptic arrays [19].  

In the past few years, the research on eNVM based synaptic devices and its integration to the array-level 

has made remarkable milestones in the past few years. At the device-level, many resistive synaptic device 

candidates that are capable of tens to hundreds levels of conductance states have been demonstrated at 

single device level. The resistive synaptic devices could emulate the biological synapse in the sense that 

ions or atomic migration/rearrangement in the solid-state dielectrics (e.g. in oxides/chalcogenides) could 

modulate the conductance between the two electrodes, as the biological synapse modulate its conductance 

via the activation of voltage-gated calcium channels. At the array-level, there have been a few experimental 

demonstrations of simple neural network algorithms on small-scale (e.g. 12×12) to medium-scale (e.g. 

256×256) with software and/or off-chip control. These demonstrations show the great promises for future 

large-scale integration and prototypes with CMOS on-chip control. In addition, the computer aided design 

(CAD) or electronic design automation (EDA) tool development has facilitated the co-optimization of 

device properties with circuits/architectures and algorithms, to address the design challenges associated 

with device yield, device variability, and array parasitics when the array size is scaled up. Pioneering 

simulation frameworks have been developed to evaluate the impact of device-level non-idealities (limited 

weight precision, weight update non-linearity/asymmetry, variation/noise, etc.) on the trade-offs between 

learning accuracy and training speed/energy.   

In this context, it is timely to have a holistic review of the recent progresses in the field of neuro-inspired 

computing with eNVMs. There are several comprehensive reviews on eNVMs for digital memory 
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applications [20, 21, 22, 23, 24] and CMOS based neuromorphic circuits [25, 26, 27]. There are also 

pioneering reviews on the synaptic devices which mostly focused on the material aspects of synaptic 

devices [17, 28, 29]. To our best knowledge, there is no dedicated comprehensive review on eNVMs for 

neuro-inspired computing hierachically from device-level, array-level up to circuit/architecture-level. In 

the past few years, significant progresses have been made on the array-level demonstration, and CAD/EDA 

tool development as discussed above, while these new results have not been reviewed before. With these 

considerations, we aim to have this review paper to survey state-of-the-art synaptic device properties, small-

scale to medium-scale array integration, and early exploration of device-circuit-architecture-algorithm co-

design, with the hope of inspiring the research community for the future interdisciplinary collaborations on 

this emerging and exciting research topic. It should be pointed out that this review is oriented towards using 

eNVM based devices for energy-efficient computing, instead of emulating the biologically realistic 

behaviors.   

2. Overview of Neuromorphic Hardware Design Approaches 

In the conventional von-Neumann computer architecture, the well-known “memory wall” problem that the 

data movement between the microprocessor and off-chip memory/storage has become the bottleneck of the 

entire system [30]. This problem becomes even more severe when the large amount of data is required for 

computation in the training and/or testing of the large-scale neural network. As the neuro-inspired learning 

algorithms extensively involve large-scale matrix operations, computing paradigms that take advantage of 

the parallelism at finer-grain level directly on-chip are attractive. One promising solution is the neuro-

inspired architecture that leverages the distributed computing in the neurons and localized storage in the 

synapses .The neuro-inspired architecture leverages the distributed computing in the neurons and localized 

weight storage in the synapses [31]. Figure 1 shows such revolutional shift of the computing paradigm from 

the computation-centric (von-Neumann architecture) to the data-centric (neuro-inspired architecture). The 

neurons are simple computing units (for nonlinear activation of thresholding function) and the synapses are 

local memories that are massively connected via the communication channels. The ultimate goal of the 

hardware implementation of the neuro-inspired computing is to supplement (but not supplant) today’s von-

Neumann architecture for application-specific intelligent tasks such as image/speech recognition, 

autonomous driving, etc. 

 

Figure 1 A revolutional shift of the computing paradigm from the computation-centric (von-Neumann 

architecture) to the data-centric (neuro-inspired architecture). 
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Different hardware platforms with partial parallelism have been explored so far for implementing neuro-

inspired learning algorithms. Generally, there are two design approaches (or philosophies) for 

neuromorphic hardware depending on how to encode the information. The first approach stays on the digital 

(non-spiking) implementation of machine/deep learning or artificial neural network (ANN) while takes the 

inspirations from the neural system to maximize the parallel or distributed computation. In the digital 

implementations, the neuron values are encoded by binary bits or number of pulses. As off-the-shelf 

technologies, GPUs [32] or field-programmable-gate-arrays (FPGAs) [33] have been widely used for 

hardware acceleration for machine/deep learning. To further improve the energy-efficiency, CMOS based 

ASIC accelerators [10] [12] [13, 14, 15] have been prototyped. For example, Google used their custom 

designed TPU platform to accelerate the complex intelligent computation tasks behind AlphaGo [34]. The 

digital (non-spiking) approach aims to improve the computation efficiency in terms of the performance per 

second per watt (e.g. in the metric of operations per second per watt). The second approach exploits the 

spiking behavior of spiking neural network (SNN) which aims to emulate the biologically realistic neural 

network more closely. In the spiking approach, the neuron values are encoded by the spiking timing (e.g. 

the interval between spikes) or even the spike’s actual waveform shape. Examples include custom designed 

CMOS based neuromorphic chips (i.e. Heidelberg’s BrainScaleS [9], IBM’s TrueNorth [11], etc.). The 

BrainScaleS platform is based on HICANN chip in 180 nm node that use analog neurons similar as the 

leaky integrate-and-fire model and digital synapses made of 4-bit 6-transistor SRAM cells and 4-bit digital-

analog-converter (DAC) to interface with analog neurons [35]. One die consists of 512 neurons and 100 

kilo synapses, and one wafer consists of ~200 kilo neurons and ~40 million synapses. BrainScaleS could 

run 10 000× faster than the biological real time (~kHz) but consume 500W/wafer. The TrueNorth chip uses 

digital neurons and digital synapses made of 1-bit transposable 8-transistor SRAM cell. In particular, one 

TrueNorth chip integrates 4,096 neuro-synaptic cores with 1 million digital neurons and 256 million SRAM 

synapses that was fabricated in 28 nm node. The TrueNorth chip demonstrated 70 mW power consumption 

to perform real-time (30 frames per second) object recognition with very low clock frequency (~kHz).  

Table 1 summarizes the categories of different design approaches for hardware implementation of neuro-

inspired computing. Here the categories are “loosely” classified based on how the information is encoded 

and the technological choice of the hardware platforms. The neuron could be encoded either by the digital 

representation using binary bits or number of pulses or by the spike representation, while the synapses can 

be either binary or multilevel (in an analog fashion).  

Depending on how the training of the neural network is completed, there are two ways of training: offline 

(ex-situ) training and online (in-situ) training. Offline training means that the training is done by software 

and the trained weights are loaded to the synaptic arrays of the neuromorphic hardware by one-time 

programming and then only the inference or classification is performed on the hardware. For example, the 

TrueNorth supports only offline training (the weights need to be pre-trained and loaded to SRAM arrays). 

Therefore, such inference-only engine could be used for the edge devices where the model is pre-defined 

by the cloud, but it could not adapt to the constantly changing input data and/or learn new features during 

the run-time. Online training means the training is done during runtime on the neuromorphic hardware (i.e. 

weights are trained on-the-fly). To accelerate the training on the neuromorphic hardware is a much more 

challenging task. The weight updating rule is different in the machine/deep learning and in the spiking 

neural network. In the machine/deep learning, typically back-propagation (i.e. by stochastic gradient 

descent method) layer by layer is used to optimize the objective cost function by comparing error between 

the prediction and the true label, thus it is a supervised and global training method. By contrast, in the 

spiking neural network, the local synaptic plasticity (i.e. between neighboring neurons) is often used in an 

unsupervised fashion. One important biologically-plausible learning rule is the spike-timing-dependent 

plasticity (STDP) [36]. The STDP learning rule states that if the pre-synaptic neuron fires earlier than the 

post-synaptic neuron, the conductance of the synapse (weight) will decrease, and vice versa. The change of 

the weight is larger when the timing between the two neurons firing is closer. However, how to exploit such 

STDP learning rule (unsupervised and local to two adjacent neurons) to efficiently update the entire neural 

network remains to be explored. So far, the learning accuracy of machine/deep learning with back-
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propagation for solving today’s practical classification problems (e.g. image/speech recognition) is 

significantly better than that of spiking neural network with STDP learning. Therefore, in this review, we 

focus more on the design perspectives for the machine/deep learning (rather than the spiking neural 

network).  

Table 1 Categories of different design options for hardware implementation of neuro-inspired computing. 

Representative porotypes are shown.  

 Off-the-shelf 

technologies 

CMOS ASIC  Emerging resistive 

synaptic devices 

Level-based 

representation 

GPUs [32] 

FPGAs [33] 

TPU [34]  

CNN accelerators [12] [13, 

14, 15] 

Analog synapses: 

UCSB’s 12×12 crossbar 

array [37] 

Umich’s 32×32 crossbar 

array [38] 

Tsinghua’s 128×8 1T1R 

RRAM array [39] 

IBM’s 500×661 1T1R 

PCM array [40] 

UCSB’s 785×128 

floating-gate transistor 

array [41] 

Binary synapses: 

ASU/Tsinghua’s 16 Mb 

1T1R RRAM macro [41] 

Spike representation SpiNNaker [8] Analog neuron: BrainScaleS 

[9]. 

IBM’s 256×256  1T1R 

PCM array with STDP 

neuron circuits [40] 
Digital neuron: TrueNorth 

[11] 

 

Now let us discuss why eNVM is attractive for the hardware implementation of neuro-inspired computing. 

To overcome the aforementioned challenges with the SRAM based synapses, the researchers are attracted 

by exploiting the unique properties of eNVMs to better serve the analog synapses in the neural network. 

The goal is to replace the SRAM arrays with the resistive crossbar arrays to store and/or update the weights 

in a more parallel fashion. Compared to the binary SRAM cell with 6 or 8 transistors, the eNVM cell 

occupies more than tens of times less area and can store multi-bit per cell, which further increases the 

integration density thereby supporting a larger capacity on-chip (for larger problem size or dataset). Storing 

most or all the weights on-chip thus eliminating the off-chip memory access is critical to the acceleration 

and the reduction of energy consumption from the entire system point of view. Thanks to the non-volatility, 

the eNVM devices can be powered off-and-on instantly and consume no standby leakage. In addition, 

unlike SRAM array’s sequential write and read, resistive crossbar array with eNVMs can do parallel 

programming and weighted sum for further speedup, potentially enabling the online training.  
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Generally speaking, eNVMs are mostly resistive memories that use “resistance” to represent and store data, 

although the ferroelectric memory uses “capacitance” to present and store data. The resistance based 

eNVMs including the spin-transfer torque magnetic random-access memory (STT-MRAM) [42], phase 

change memory (PCM) [20], resistive random access memory (RRAM) [21]. RRAM has two sub-

categories: one is anion-based oxide random access memory (OxRAM) and the other one is cation-based 

conductive bridge random access memory (CBRAM) [43]. In some literature, resistive memories are also 

referred to as memristors [24]. In this review, we will focus on PCM and RRAM technologies as they have 

demonstrated the multilevel states, and also will briefly discuss the usage of the ferroelectric field-effect 

transistor (FeFET) and the floating-gate transistor (the basic cell for today’s flash memory technology) 

towards synaptic devices. The eNVMs are mostly pursued as the next-generation storage-class memory 

technologies with aggressive industrial research and development [22]. For example, Samsung has reported 

an 8 Gb PCM prototype chip in 20 nm node featuring 40 MB/s write bandwidth [44]. SanDisk/Toshiba has 

reported a 32 Gb RRAM prototype chip in 24 nm node [45]. Micron/Sony has reported a 16 Gb CBRAM 

prototype chip in 27 nm node featuring 200 MB/s write bandwidth and 1 GB/s read bandwidth. Panasonic 

has commercial products of micro-controllers with MB-capacity embedded TaOx RRAM [46]. These 

demonstrations show that the eNVMs are viable technologies for the potential large-scale integration of the 

neural networks. 

 

3. Device-level Characteristics of Synaptic Devices 

3.1 Desirable characteristics 

In this section, we will discuss the desirable characteristics for resistive synaptic devices for improving 

learning accuracy and energy-efficiency. Table 1 summarizes the desirable performance metrics for 

resistive synaptic devices. It should be noted that many of the metrics are highly application-dependent 

(related to different scenarios, e.g. online or offline training, and the dataset size, etc.).  

Device Dimensions: The large-scale integration of neural networks requires a compact synaptic device with 

a small device footprint. Resistive synaptic devices with scalability down to sub-10 nm regime is preferred. 

Today’s RRAM and PCM devices have proven such scalability, however most of the demonstrations are 

for the digital memory application. Embedded floating-gate transistor (though a more mature technology) 

seems difficult to be scaled down to 28 nm or beyond. Ultimately, a two-terminal eNVM device (ideally 

with a two-terminal selector) that is compatible with the crossbar array architecture and three-dimensional 

integration is the target for research. 

Multilevel States: Synaptic plasticity characteristics observed on biological synapses show an analog-like 

behavior with multilevel synaptic weight states. Most neuro-inspired algorithms also employ the analog 

synaptic weights to learn the patterns or extract features. In general, the more multilevel states (e.g. > 

hundreds of levels) could be translated into a better learning capability and an improved network robustness. 

However, the weight precision requirement (i.e. the number of conductance states) remains strongly 

application-dependent. Generally, for the online training requires more levels of states than the inference-

only. We will have more in-depth discussion on precision reduction from the algorithm point of view in 

Section 5.2. If the multilevel states in the resistive synaptic devices are insufficient to meet the precision 

requirement, there are two alternative solutions: First, multiple devices could be grouped to represent higher 

precision at the expensive of area and energy [41]. Second, recent work shows that binary synaptic devices 

with stochastic weight update may equivalently provide the properties of analog synapses  for some simple 

neural networks [47, 48].  

Dynamic Range:  Dynamic range means the on/off ratio between the maximum conductance and minimum 

conductance. Most of resistive synaptic device candidates exhibit a range of 2× to >100× range.  The larger 

the dynamic range is, the better mapping capability of the weights in the algorithms to the conductance in 

the devices, because the weights in the algorithms are typically normalized within a range (e.g. between 0 
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and 1). Considering the power consumption for parallel reading the weights in a large-scale integration of 

neural networks (e.g. with a matrix size 512×512 or above), a guideline of the desired range of a single 

device could be from 1 nS to 100 nS.  

Asymmetry and Linearity in Weight Update: The linearity in weight update refers to the linearity of the 

curve between the device conductance and the number of “identical” programming pulses. Ideally, this 

should be a linear and symmetric relationship for a direct mapping of the weights in the algorithms to the 

conductance in the devices. However, the realistic resistive synaptic devices generally have the nonlinearity 

in weight update. The trajectory of the weight increase (long-term potentiation, LTP) process differs from 

that of the weight decrease (long-term depression, LTD) process, resulting in the asymmetry as well. The 

conductance tends to change rapidly at the beginning but saturate at the end of the processes. Figure 2 (a) 

shows an example of the TaOx/TiO2 device conductance under identical programming pulses [49, 50]. This 

nonlinearity/asymmetry is undesired because the change of the weight (ΔW) depends on the current weight 

(W), or in other words, the weight update has a history dependence. Recent results have shown that this 

nonlinearity/asymmetry has caused the learning accuracy loss in the neural networks [51, 49]. We will have 

more in-depth discussion on the impact of weight update nonlinearity in Section 5.2. There are a few 

strategies to improve the linearity by optimizing the programming schemes. For example, identical pulse 

pairs (a larger pulse followed by a smaller pulse with reversed polarity) could improve the nonlinearity of 

the TaOx/TiO2 device, as shown in Figure 2 (b). Non-identical pulses with varying widths could further 

improve the nonlinearity of the TaOx/TiO2 device, as shown in Figure 2 (c). However, the non-identical 

pulse generation requires non-trivial design efforts from the peripheral circuit’s perspective. Therefore, in 

this review, we only consider the case when identical pulses are used to update the weights. It should be 

noted that the weight update nonlinearity/asymmetry is a key issue only for online training, which requires 

a smooth and continuous conductance tuning, while for offline training, the nonlinearity could be shadowed 

by the iterative programming with write-verify technique (see discussions in Section 3.2 B).  

 

Figure 2  The weight update behavior (conductance vs. # pulse) of TaOx/TiO2 device with different pulse 

schemes. Non-identical pulses with varying pulse widths could improve the nonlinearity/asymmetry, but 

complicates the peripheral circuitry design. Adapted from [49].  

Programming Energy Consumption: The estimated energy consumption per synaptic event is around 1~10 

fJ in biological synapses. Most RRAM devices show a programming energy around 100 fJ~10 pJ, while 

most PCM devices may have even higher programming energy 10~100 pJ. The fundamental challenge is 

that it is much more difficult (thus paying more energy) to move the ions/defects in solid-state devices than 

moving calcium ions in the liquid environment in biological synapses. A back-of-envelop calculation is 

given as follows. In biological synapses, the spike voltage is ~10 mV, the ionic current ~1 nA, the spike 

period ~ 1 ms, therefore the energy is about 10 fJ. In resistive synaptic devices, the typical programming 

voltage is ~1 V, the programming current is typically ~µA, although the programming speed can be 

accelerated less than the real-time to be ~µs, still the energy is on the order of pJ. Further device engineering 

is thus needed to reduce the energy consumption by improving the programming speed down to ~ns regime.  
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Retention and Endurance: During the online training, the weights are frequently updated, and the data 

retention requirement can be relaxed. When the training is complete, the resistive synaptic devices should 

behave as a long-term memory with a data retention in the order of 10 years at the maximum chip operating 

temperature (e.g. 85 oC). The number of cycling endurance is much application-dependent, relying on how 

many weight updates are required in the training processes. For a relatively simple task (i.e. the MNIST 

handwritten digit recognition [52]), 60,000 training images with 50 training epochs (to be repeated) gives 

a maximum weight update possibility to be 3×106 updates. Actually not every synapse is updated in the 

training in each cycle, thus an endurance ~104 cycles is sufficient for training MNIST dataset [41]. However, 

considering more challenging tasks (i.e. ImageNet Challenge [5]), much more endurance may be required. 

It should be pointed out that the definition of the endurance cycles is tricky in the resistive synaptic devices, 

because each weight update is generally a small incremental change in the analog conductance tuning, thus 

it is unlike the full switching from the on-state to the off-state in a binary eNVM.   

Uniformity and Variability: Poor uniformity or significant variability in eNVMs is a major barrier for digital 

memory applications. In contrast, the neural networks promise a potential robustness against device 

variations. The device variations could partially be tolerated by two mechanisms: the massive (thus maybe 

redundant) connections between neuron nodes by synaptic arrays, and the iterative weight update process 

during the online training. The degree of variations that can be tolerated at the system-level strongly 

depends on the network architecture and the accuracy required by the target application. Recent results have 

shown the reasonable robustness against device variations in different neural networks [49, 53]. However, 

for offline training (with write-verify), the requirement on the uniformity is more stringent because the 

network could not adapt itself for inference-only. We will have more in-depth discussion on the impact of 

variations in Section 5.2.  

 

Table 2 Summary of the desirable performance metrics for synaptic devices.  

Performance metrics Desired Targets 

Device dimension < 10 nm 

Multilevel states number >100* (with linear and symmetric update) 

Energy consumption <10 fJ/programming pulse 

Dynamic range (on/off ratio) >100* 

Retention >10 years* (for inference) 

Endurance >109 updates* (for online training) 

Note: * these numbers are application-dependent 

 

3.2 Representative materials systems and device prototypes 

In the past few years, many resistive synaptic device candidates that are capable of tens to hundreds levels 

of conductance states have been demonstrated at single device level. In addition to the analog conductance 

tuning capability, biologically realistic behaviors such as short-term memory, pair-pulse facilitation, and 

spike-timing-dependent plasticity have been emulated in various devices including Ag/Ag2S [54], Cu/Cu2S 

[55], Ag/GeS2 [56], Ag/Ge30Se70 [57] Ag/SiOxNy [58] based CBRAM, TiOx [59], HfOx [60, 53, 61], WOx 

[62, 63] and TaOx [64] based OxRAM, etc. However, how these bio-plausible features could facilitate the 

computation at the system-level is unclear so far, thus in this review, we will only survey the analog weight 

update characteristics of the reported devices.  
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A. PCM 

The resistance change in PCM relies on the reversible crystallization and amorphization of the chalcogenide 

materials [20], typically Ge2Sb2Te5. The crystalline phase has a lower resistance (higher conductance) than 

the amorphous phase, and multilevel resistance states could be achieved by controlling the volume of the 

amorphous region. The larger ratio of the amorphous volume over the crystalline volume will result in a 

larger resistance. Therefore, the PCM device could behave as an analog synapse. The realization of PCM 

based synaptic devices could be dated back to the work [65], where the device conductance could be 

gradually increased or decreased with ~100 states by applying a sequence of programming pulses with 

increasing amplitudes. The STDP learning rule has also been demonstrated by designing the appropriate 

pulse waveforms. Then various pulse programming schemes have been proposed by different groups to 

reduce the complexity and power consumption of neuromorphic circuits using the PCM devices [66, 67, 

68, 69]. One challenge of PCM based synaptic device is the relatively more abrupt RESET (weight decrease) 

process than the SET (weight increase) process. This is because the melting and quench in the RESET is 

less controllable than the partial crystallization in the SET. Figure 3 (a) shows multilevel states are achieved 

by identical SET programming pulses, while Figure 3 (b) shows only binary states are achieved by identical 

RESET programming pulses. To address this challenge, a design of 2-PCM synapse has been proposed 

[70]: one is used to implement synaptic potentiation (LTP-device) while the other one is used to implement 

synaptic depression (LTD-device). In both cases, the device undergoes partial crystallization (i.e. gradual 

SET) process. With this scheme, the conductance of both PCM devices keeps increasing when undergoing 

LTP and LTD, the contribution of the currents through the LTP device is positive while the contribution 

through the LTD device is negative in the differential output stage. The negative current through the LTD 

device acts like synaptic-depression, because the current flowing through it is subtracted in the differential 

output stage. The operation principle of the 2-PCM synapse device is shown in Figure 3 (c). 

 

Figure 3 GST based PCM weight update: (a) Weight increase (LTP) (b) Weight decrease (LTD). Gradual 

LTD is more difficult to achieve in PCM due to the abrupt RESET process. (c) Schematic of the concept 

of 2-PCM synapse to avoid the abrupt RESET process. The contribution of the current from the LTD device 

is subtracted at the post synaptic neuron. Adapted from [70]. 

 

B. RRAM  

Generally, there are two kinds of switching mechanism of RRAM devices, one is based on the filamentary 

mechanism, in which the conductive filaments with metal ions or oxygen vacancies form and rupture in the 

insulating layer; the other type is based on the interfacial mechanism, in which the distribution of oxygen 

vacancies at the interface (e.g. oxide/oxide interface, or electrode/oxide interface) is modulated by the 

electric field. For the conventional memory application, the filamentary RRAM is widely adopted. However, 

the filamentary RRAM has typically shows an abrupt SET (weight increase) process, and a gradual RESET 

(weight decrease) process. Note this trend is just opposite to the typical PCM device. Thus in the early 

design of RRAM based synapse, one-way RESET-only learning scheme was used in HfOx based synaptic 

device [71]. The abrupt SET is attributed to the positive feedback between the filament growth speed and 
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the electric field, resulting in the formation of a single dominate strong filament [72]. To make the SET 

process gradual, one way is the oxide stack engineering (i.e. bilayer oxides) to make weak or multiple weak 

filaments as demonstrated in TaOx/HfO2 [73] and AlOx/HfO2 [74] devices. On the other hand, the interfacial 

device typically shows both gradual SET and RESET processes, as demonstrated in Ag:a-Si [75], 

PrCaMnO3 (PCMO) [76, 77]  and TaOx/TiO2 devices [78, 79].  

Depending on the application scenarios, for online training or for offline training, different programming 

schemes could be used thus the requirement on device characteristics may be different. For instance, for 

offline training, the write-verify technique could be used to iteratively program the conductance states to 

the pre-defined target level, since it is a one-time programming process and the programming speed is not 

a priority but the programming accuracy is. Typically, a pulse sequence (programming-read-programming-

read …) is applied as shown in Figure 4 (a) [80]. The higher amplitude programing voltage pulses could be 

used to reach the desired resistive state faster but also at a cruder precision. On the other hand, smaller 

amplitude pulses will approach the state at a finer step but may require an exponentially longer time. It is 

therefore natural to use a variable amplitude pulse sequence to approach the desired state in optimal time. 

With no variations in switching dynamics, this could be achieved by applying a sequence of decreasing 

amplitude voltage pulses with every new pulse driving the device closer to the desired state (Figure 4 (b)). 

Because of device-to-device variations calculating the parameters of the initial pulse is challenging. 

Somewhat counterintuitively, one possible solution is to use sequences of increasing amplitude voltage 

pulses (Figure 4 (c)) instead, which always starts with small non-disturbing pulse. The device conductance 

is checked by applying read pulse after each write pulse. Such alternating read/write sequence is applied 

until either the desired tuning accuracy is reached or overshooting occurs. In the latter case, the new 

sequence of opposite polarity is started. Because this time the initial state would be typically closer to the 

desired one, the final maximum amplitude of the write voltage pulse in that new sequence will be smaller 

as compared to that of earlier sequence, which in turn ensures driving the device closer to the desired state.  

For single Pt/TiO2-x/Pt devices, the algorithm allows tuning the conductance with 1% precision (which is 

equivalent to ~ 8 bit) to any desired value within device’s dynamic range, as shown in Figure 4 (d) [80]. 

Due to half select problem the accuracy is expected to be lower, e.g. about 3% as demonstrated in small 

crossbar circuits. For Ag/a-Si/Pt single devices, the tuning accuracy is also close to 1% for low resistive 

states [81]. It should be noted that one of the factor limiting accuracy for high resistance states in these 

devices is intrinsic random telegraph noise (RTN). Similar iterative programming schemes were 

demonstrated in HfOx devices as well [82]. 

 

Figure 4 Variation tolerant high precision tuning algorithm for offline training: (a) algorithm block diagram, 

(b) intuitive and (c) actually implemented voltage pulse sequence for tuning to a desired conductance state. 

High precision (~1%) tuning of analog memory demonstration in Pt/TiO2-x/Pt devices. Adapted from [80]. 
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On the other hand, for online training, a smooth conductance tuning without write-verify is preferred, as 

the weights are trained on-the-fly, and the programming speed does not allow the back-and-forth iterative 

programming. Figure 5 shows some examples of state-of-the-art RRAM based devices in the literature that 

exhibit the bidirectional gradual conductance tuning under programming voltage pulses. Tens or even 

hundreds of multilevel states have been demonstrated, however, the weight update nonlinearity and 

asymmetry commonly exist. Note that the weight decrease curves in Figure 5 are mirrored back (as opposed 

to that in Figure 2).   

Figure 5 Representative analog synaptic device weight update behaviors from the literature: TiOx/TiO2 [78], 

PCMO [77], Ag:a-Si [75], AlOx/HfO2 [74]. 

C. FeFET 

The ferroelectric field-effect-transistor (FeFET) synaptic device is a three-terminal structure that decouples 

the weight tuning and weight read path: the weight tuning relies on the programming voltage applied to the 

gate, while the weight current is read out by the drain-to-source current. Due to the three-terminal nature, 

FeFET is organized to a pseudo-crossbar array architecture for weighted sum (see more discussions in 

Section 5.1 A on pseudo-crossbar array). The physical mechanism of FeFET utilizes the multi-domain 

effects present in ferroelectric materials (i.e. the doped HfO2) to gradually tune the gate capacitance and 

consequently the threshold voltage (VT) and the channel conductance by the application of short voltage 

pulses to the gate [83, 84]. A recent experimental demonstration of analog FeFET synaptic device used the 

gate last fabrication process flow of an n-channel FeFETs [85], as shown in Figure 6. The gate stack consists 

of 10 nm Hf0.5Zr0.5O2 (HZO) deposited by atomic-layer deposition n p-Si with 0.8 nm interfacial SiO2 layer, 

and 600°C anneal gives rise to multiple ferroelectric domains within a nanocrystaline structure of the HZO 

(see the inset figure of the transmission electron microscopy). The synaptic behavior in response to pulse 

Schemes 1-3 are shown in Figure 6 (a)-(c). Similar as in Figure 2, non-identical pulses with increasing 

widths or amplitudes improve the nonlinearity of the weight update curve, and Scheme 3 (with 75 ns width) 

exhibits the largest number of states, 32 (5-bit) and an on/off ratio of 47×. Compared to previous reported 

RRAM based analog synaptic devices, FeFET shows some promising features such as enlarged on/off ratio 

and shorter programming pulse width, as well as less variations in the weight update curve. 
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Figure 6 The fabrication process of doped HfO2 based FeFET. Pulse schemes and corresponding weight 

update curves for (a) Pulse scheme 1 with identical pulses, (b) Pulse scheme 2 with increasing pulse widths 

and (c) Pulse scheme 3 with increasing pulse amplitudes. Adapted from [85]. 

 

4. Array-level Demonstration of Crossbar Array for Dot-Product Acceleration 

4.1 The principle of weighted sum and weight update in crossbar array 

The resistive crossbar array architecture has been proposed for implementing the weighted sum (or matrix-

vector multiplication, dot product operation) [86], which is the mostly time-consuming step in the neuro-

inspired learning algorithms. As shown in Figure 7, the crossbar array consists of perpendicular rows and 

columns with the resistive synaptic devices sandwiched at each cross-point. The weights in the neural 

network are then mapped to the conductance of the resistive synaptic devices.  

The weighted sum operation is performed in a parallel fashion: read voltages are applied to all the rows, 

and then the read voltages are multiplied by the conductance of the synaptic devices at each cross-point, 

resulting in a weighted sum current in each column. Typically, the neuron circuits are placed at the end of 

the column to convert this analog current to the digital output or spikes. The proposed crossbar array 

architecture only performs the analog computation in the array core, and the communication between arrays 

is still through digital fashion considering the signal integrity issues in the on-chip routing channels. 

Although the input vectors could be represented by the analog voltage, it is better to be represented by the 

digital number of pulses. This is because the I-V nonlinearity of the resistive synaptic device may distort 

the weighted sum accuracy if using analog voltage ,and it is also difficult to generate multiple bias levels 

within a small read voltage range from peripheral circuit design’s perspective [87].  It is also worth pointing 

out that the sneak path problem for the conventional crossbar memory does not exist here if all the rows 

and columns are activated during the weighted sum. This is because the conventional memory requires 

reading out data by bit or by row, while all the cells here participate in the computation essentially following 

the Kirchhoff Law. The IR drop problem along long interconnect wires still exists here for a large-scale 

array, as the interconnect resistance may distort the weighted sum accuracy if it is a significant portion of 

the synaptic device resistance. The interconnect resistance effect can be mitigated by either relaxing the 

wire width [87] or re-mapping the weights of the weights in the algorithms to the conductance in the devices 

[88].  

The weight update operation can be performed row by row (or column by column) in the crossbar array. In 

this case, selectors with threshold switching I-V (e.g. FAST selector [89]) may be needed to minimize the 

leakage current in other unselected rows/columns. In principle, the weight update can be performed in a 

fully parallel fashion on the entire array as the programming voltages can be applied from both ends (row 

and column) to the synaptic device [78, 90]. However, to program the entire array simultaneously usually 

demands a huge instant power from the peripheral circuits which seems not very feasible in practical designs.  
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Figure 7 (a) The weight matrix between neuron layers in the neural network. (b) The crossbar array consists 

of perpendicular rows and columns with the resistive synaptic devices sandwiched at each cross-point. The 

weights in the neural network are mapped to the conductance of the resistive synaptic devices. The weighted 

sum operation is performed by applying read voltages to all the rows and read out the weighted sum current 

in all the columns. 

 

4.2 Array-level experimental demonstration 

Although various resistive synaptic device prototypes have been reported in the literature, most of these 

work still focus on the single device characterization. The early design exploration of array-level 

performance is based on simulation only with the device model fitted with single device measurement data, 

as pioneered in [91, 56].  

Recently, there have been a few experimental demonstrations of simple neural network on small-scale to 

medium-scale arrays. For example, K.-H. Kim, et al. [92] demonstrated one-time programming weights 

into 40×40 Ag: a-Si crossbar array. S. B. Eryilmaz, et al. [93] employed a Hopfield network consisting of 

a 10×10 PCM 1T1R array and 10 recurrently connected software neurons for the implementation of 

associative learning. Later, using the same platform with 2-PCM per synapse, S. B. Eryilmaz, et al. [94] 

demonstrated a Restricted Boltzmann Machine (RBM) with 9×5 synapses, a generative probabilistic 

graphical model as a key component for unsupervised learning in deep neural network. S. Park, et al. [95] 

demonstrated a single-layer perceptron network in 32×6 PCMO crossbar array with off-chip neuron circuits 

on a printed circuit board. In this experiment, the human thought patterns corresponding to three vowels, 

i.e. /a /, /i /, and /u/, were in-situ learned and recognized using electroencephalography (EEG) signals 

generated while a subject imagines speaking vowels. P. M. Sheridan, et al. [38] demonstrated a 32×32 WOx 

crossbar array with offline trained analog weights for implementing the sparse coding algorithm for 

unsupervised feature extraction. M. Hu, et al. [96] developed a 64×64 TiOx based 1T1R array with 6-bit 

(64 levels) offline training and a single-layer perceptron for MNIST image recognition. L. Gao, et al. [97] 

proposed a scheme to implement the convolution kernel in CNN by unrolling 2D kernel matrix into 1D 

column vector and demonstrated the concept in a 12×12 HfOx crossbar array.  

Furthermore, with more mature PCM and floating-gate transistor technologies, a few full functional macro 

chips have been developed as well. For example, S. Kim, et al. [40] demonstrated a 64 kb (256×256) PCM 

1T1R array with on-chip leaky integration and fire neuron circuits for continuous in-situ STDP learning. J. 

Lu, et al. [98] developed a machine learning prototype chip in 130 nm node with floating-gate synapses, 

exhibiting a remarkable energy efficiency 480 GOPS/W in the training mode and 1 TOPS/W in the 

inference mode.  
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The aforementioned demonstrations show the promises for future large-scale integration with eNVMs for 

neuro-inspired computing. In the next, we will present a few representative array-level demonstrations that 

perform the online training with the eNVMs inside the array. However, it should be pointed out that the 

weighted sum is still performed row-by-row sequentially in demonstrations in Section 4.2 A and B due to 

the design limitations in the 1T1R array to turn on one row at a time.  

 

A. IBM’s 500×661 1T1R PCM array for MNIST recognition 

Using 2-PCM per synapse, G. W. Burr, et al. [51] demonstrated a 3-layer perceptron (fully-connected ANN) 

with 164,885 synapses, trained with backpropagation on a subset (5,000 examples) of the MNIST database 

of handwritten digits, as shown in Figure 8 (a). The experiments were done using software based neurons 

which perform the nonlinear activation function, while the weighted sum and weight update were measured 

and implemented with the 500×661 1T1R PCM array. The weight update in backpropagation was done 

using a modified delta rule that sends the stochastic pulses from rows and columns, and the overlap of the 

two pulses becomes the effective programming time window. It is proved that this weight-update 

modification does not degrade the classification accuracy in the testing dataset as compared to the case 

when the network was trained in software. However, nonlinearity and asymmetry in PCM’s weight update 

limit the learning accuracy in this hybrid hardware-software experiments to 82-83%, as shown in Figure 8 

(b), though the learning accuracy could achieve ~97% in the software baseline. Asymmetry (between the 

gentle conductance increases of PCM partial-SET and the abrupt conductance decrease of a PCM RESET 

operation) was mitigated by an occasional RESET strategy, which could be both infrequent and inaccurate. 

While in these initial experiments, network parameters such as learning rate η had to be tuned very carefully, 

a modified “Local Gains” algorithm offered wider tolerance to η, higher classification accuracies, and lower 

training energy as proposed in this group’s later work [18]. The sensitivity analysis [99] showed that 

eNVM-based ANN can be expected to be highly resilient to random effects (e.g. variability, yield, and 

stochasticity), but highly sensitive to “gradient” effects that act to steer all synaptic weights. It is shown 

that an ideal bidirectional eNVM with a symmetric, linear weight update of finite but large dynamic range 

can deliver the same high classification accuracy on the MNIST dataset as a conventional, software-based 

implementation. 

 

 
Figure 8 (a) The implementation of 3-layer perceptron with PCM synapses. In feed forward propagation, 

each layer’s neurons drive the next layer through weights wij and a nonlinear neuron activation function f(). 

Input neurons are driven by input (for instance, pixels from successive MNIST images (cropped to 22×24)); 

the 10 output neurons classify which digit was presented. (b) Learning accuracy for a 3-layer perceptron of 

164,885 synapses with 2-PCM per synapse, with all weight operations taking place on a 500×661 PCM 

1T1R array. Also shown is a matched computer simulation of this network, using parameters extracted from 

the experiment. Adapted from [51]. 
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B. Tsinghua’s 128×8 1T1R analog RRAM array for face recognition 

As shown in Figure 9, P. Yao, et al. [39] demonstrated a 1-layer perceptron for face recognition with 128×8 

1T1R analog RRAM array, as shown in the micrograph of the array. Different than the unidirectional 

conductance tuning in PCM as used in Section 4.2 A, bidirectional analog conductance modulation was 

achieved in TaOx/HfAlyOx RRAM stack, which was integrated on top of a CMOS transistor to form the 

1T1R structure. The network was trained online to recognize and classify grey-scale face images from the 

Yale Face Database [100] and tested with the extra unseen faces as well as constructed images with noisy 

pixels. The experiments include two phases: inference and weight update. As for the inference phase, the 9 

training patterns (belong to three people) were input to the network on bitline (BL) side as read voltages. 

These 9 patterns were chosen from the Yale Face Database and sequentially cropped and down-sampled to 

320 pixels in 20×16 size. The total currents measured on source line (SL) side (3 lines) is applied to a 

nonlinear activation function in software neuron to predict 3 classes of faces. In the weight update, two 

update rules were proposed, one is without write-verify (1) which only points out the switching direction 

depending on the error’s sign, following the Manhattan rule; and the other one is with write-verify (2) which 

implements both direction and amplitude based on the error’s sign and value, following the delta rule. 

Without write-verify scheme simplifies the control circuitry since it is not necessary to calculate the specific 

analog value of the error between the targeted weight and the current weight, but may slow down the 

converging speed due to the programming stochasticity. There is a trade-off between these two schemes: 

with and without verify schemes could achieve a relatively high recognition rate after converging, i.e. 

91.7% and 87.5% respectively. The scheme with verify shows 4.61X faster converging speed, 1.05X higher 

recognizing accuracy, and 4.41X lower energy consumption. The network was also tested with random 

noises in the image pixels and can maintain its classification accuracy up to 31.25% noise.  
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Figure 9 (a) The micrograph of the fabricated 128×8 1T1R array using fully CMOS compatible fabrication 

process. (b) The RRAM device stack is based on TaOx/HfAlyOx and integrated on top of a CMOS transistor, 

with a bidirectional gradual I-V characteristic for analog conductance tuning. (c) The flowchart of the 1-

layer perceptron model for the training process and two weight update rules were proposed, one is without 

write-verify (1) which only points out the switching direction; and the other one is with write-verify (2) 

which implements both direction and amplitude. The schematic of fully parallel read operation and how a 

pattern is mapped to the input. (d) The 9 training patterns belongs to three classes, a subset of Yale Face 

Database. Adapted from [39].  

 

C. UCSB’s 12×12 crossbar array for pattern recognition 

Unlike the 1T1R array used above, the practical implementation of memristor-based neural networks in a 

true crossbar array, even of their simplest variety such as multilayer perceptron (MLP) network, is still 

challenging, mainly due to its immature fabrication technology. The most critical requirement to the 

technology is to ensure a relatively low (within one octave) distribution of device forming and switching 

threshold voltages. This condition enables individual forming, and then fine-tuning of every memristor of 

the crossbar, without disturbing already formed devices. Memristors featuring low variability bilayer 

Al2O3/TiO2-x were recently reported in [37, 101]. The optimized technology was then used for the 

fabrication of integrated 12×12 crossbars, as shown in Figure 10 (a)-(b). The crossbars featured a high 

uniformity of virgin (pre-formed) and post-formed in the switching voltages, as shown in Figure 10 (c)-(d). 

The fabricated memristive crossbar was used to implement a simple neural network (a single-layer 

perceptron) with 10 inputs and 3 outputs, fully connected with 30 synaptic weight, as shown in Figure 10 

(e). Such network is sufficient for performing, for example, the classification of 3×3-pixel black-and-white 

images with 9 network inputs (V1,…,V9) corresponding to pixel values, into 3 classes (Figure 10 (f)). One 

more input, V10, was used for the source of 3 adjustable biases of nonlinear activation functions. The 

network was tested on a set of 30 patterns including 3 stylized letters (“z”, “v”, and “n”) and 3 sets of 9 

noisy versions of each letter, formed by flipping one of the pixels of the original image - see the inset in 

Figure 10 (g). Because of the limited set size, it was used for both training and testing. 

Physically, each input signal was represented by voltage Vj equal to either +0.1 V or -0.1 V, corresponding, 

respectively, to the black or the white pixel. The bias input V10 was -0.1V. Each synaptic weight was 

implemented with a pair of memristors, so that wij = Gij
+ - Gij

-, enabling negative weights values. The 

effective conductances Gij
 were in the range from 10 to 100 μS, so that the output currents Ii were of the 

order of a few μA. The network was trained “in situ”, i.e. without using its external computer model, with 

the so-called Manhattan Update Rule, which is essentially a coarse-grain, batch-mode variation of the usual 

Delta Rule of supervised training. At each iteration (“epoch”) of the procedure, the training set patterns 

were applied, one by one, to network’s input, and its outputs fi(n), where n is pattern’s number, were used 

to calculate the weight increments. Once all patterns of the training set had been applied, and all due 

increments ΔG were calculated, and the synaptic weights modified. 

In the demonstrated system, the weights were modified in parallel for each half-column of the crossbar 

(corresponding to a certain value of index i in the above formulas), using two sequential voltage pulses. 

Namely, first a “set” pulse with amplitude Vw+ = 1.3 V was applied to increase conductances of the synapses 

whose ΔG had been positive; then a “reset” pulse VW- = -1.3V was applied to the remaining synapses of 

that half-column. This fixed-amplitude pulse procedure followed the Manhattan Update Rule only 

approximately, because the actual increment of conductance G depends on its initial value. Due to this 

specific (though quite representative) switching dynamics, the best classification performance was achieved 

when the memristors had been initialized somewhere in the middle of their conductance range, around 35 

μS. At such initialization, the perfect classification was always reached - on the average, after 23 training 

epochs – see Figure 10 (g). 
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The main advantage of memristors is their very low chip footprint, determined only by the overlap area of 

the metallic electrodes. Because of that, many types of RRAM (or memristor) may be scaled down below 

10 nm without sacrificing their endurance, retention, and tuning accuracy, with some of the properties (such 

as the on/off conductance ratio) being actually improved [102]. Moreover, these devices are naturally 

suitable for 3D integration – see, e.g. recent simple demonstrations of such an integration in Figure 11 [103, 

104]. On the other hand, the tuning of memristors is based on reversible displacements of just a few atoms, 

so that even the best technologies of their fabrication developed by now do not yet provide the device 

variability low enough for VLSI circuits. The main hope is that the memristor neural networks may be able 

to piggyback on the intensive effort by several major industrial chipmakers toward the development of the 

technology of these devices for ultra-dense 2D and 3D NVMs. 

 

Figure 10 Perceptron classifier demonstration: (a) integrated 12×12 crossbar with an Al2O3/TiO2-x 

memristor at each cross-point; (b) a typical I-V curve of a formed memristor; histograms of forming voltages 

(c) and effective switching thresholds voltages (d) for set and reset transitions; (e) perceptron 

implementation using a 10×6 fragment of the memristive crossbar; (f) example of the classification 

operation for a specific input pattern; and (g) the convergence of network outputs, in the process of training, 

to the perfect  (zero-error) set, for 6 different initial states. The classification was considered successful 

when the output signal corresponding to the correct class of the applied pattern was larger than all other 

outputs. The insets in panels (b) and (g) show device’s cross-section and the used input pattern set, 

correspondingly. On panel (d), the positive / negative switching threshold voltages were defined as the 

smallest amplitudes of 500-μs voltage pulses that caused resistance change by more than 2 kΩ in memristors 

pre-set to their high / low resistive states. Adapted from [37, 101].  
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Figure 11 3D integration of memristor crossbar: (a) Circuit, (b) cross-section, and (c, d) experimental results 

of two vertically integrated TiOx planar memristor crossbars. Adapted from Ref. [103]. 

 

D. UCSB’s floating-gate array for MNIST image recognition 

Another unique opportunity is offered by the floating-gate memory technology, which can now be 

embedded in CMOS logic process. Such cells are naturally larger as compared to 2-terminal memristor 

(though quite comparable with its 1T1R version). However, their main advantage is very mature fabrication 

technology. Custom design has been recently demonstrated for the industrial-grade 180-nm [105, 106] and 

55-nm [107] (Figure 12 (a)) NOR flash memories. Naturally, floating-gate cells are suitable as adjustable 

conductances in a pseudo-crossbar fashion, with accuracy better than 1% (Figure 12 (b)-(c)), provided that 

the memory blocks are modified to allow for individual, precise adjustment of the conductance of each 

device. Such modification has already enabled a successful implementation of a medium-scale (28×28-

binary-input, 10-output, 3-layer, 101,780-synapse) network for MNIST image classification (Figure 12 (d)-

(e)) [108]. Remarkably for such a first attempt, still using the older 180-nm technology, the experimentally 

measured time delay and energy dissipation (per one pattern classification) were below, respectively, 1 μs 

and 20 nJ, i.e. at least three orders of magnitude better than the 28-nm TrueNorth chip implementation of 

the same task [109], with a similar accuracy. The experimental results for the chip-to-chip statistics, long-

term drift, and temperature sensitivity show no evident showstoppers for the practical deployment of such 

networks. The estimates [108], based on the experimentally measured parameters of the memory cells, 

showed that the transfer to the 55 nm technology, with some improvements of auxiliary CMOS circuits, 

will allow the implementation of much larger networks with a similar performance lead over the most 

prospective digital networks [12, 15]. 
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Figure 12 NOR flash memory circuits redesigned for neuro-inspired computing: (a) Layout of a 55-nm 

vector-matrix multiplication circuit with a 10×(10+2)  cell array and auxiliary pass-gates and (b, c) its 

experimental test results, for (b) cell tuning (measured vs. target weights) and (c) 4-input vector-by-vector 

multiplication. The four inputs are quasi-DC currents sampled from sine functions with different 

frequencies. 2-layer MLP based on 180-nm industrial-grade floating-gate devices: (a) high-level 

architecture (with the weight tuning circuitry for the 2nd array not shown for clarity), and (b) histograms of 

output voltages for all 10,000 MNIST test patterns. The classification of one pattern takes time below 1 μs 

time and energy below 20 nJ. Adapted from [107, 108]. 

 

5. Device-Circuit-Algorithm Co-Design Perspectives 

5.1 Peripheral neuron circuit design considerations 

A. Pseudo crossbar array. 

The crossbar array is an ideal platform with ultra-high integration density to parallelize the weighted sum 

and weight update, as discussed in Section 4.1. However, such true crossbar array (without optimized 

selectors) faces severer cross-talk, IR drop problem and high power consumption as many cells in the true 

crossbar are half selected (thus conducting current) during the programming. Alternatively, the pseudo-

crossbar with 1T1R is widely used as a near-term solution [110], as used in demonstrations in Section 4.2 
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A and B. Figure 13 (a) shows the pseudo-crossbar array architecture with peripheral supporting circuitry.  

The key feature of the pseudo-crossbar is that the bit lines (BLs) and source lines (SLs) perpendicular. 

When all word lines (WLs) are turned on, the transistors in the array are in deep triode region and become 

transparent, thus SLs and BLs form a pseudo-crossbar. With the help of the transistors, we can select an 

arbitrary part of the arrays for programming and minimize the IR drop and power consumption of the 

unselected part. To enable the parallel weighted sum operation, in the pseudo-crossbar, the decoder for the 

WLs needs a modification from the normal decoder, i.e. adding a NOR gate to have enable signal to bypass 

and turn on all WLs. In addition, a switch matrix for the BLs (and SLs) is required for simultaneously turn 

on an arbitrary number of rows (or columns).  

 

Figure 13 (a) Circuit diagram of the pseudo-crossbar array architecture with peripheral supporting circuitry. 

When all WLs are turned on, the transistors in the array are in deep triode region and become transparent, 

thus SLs and BLs form a pseudo-crossbar. (b) The input stage of a neuron node that integrates the analog 

column current and convert to spikes or digital outputs, serving as an analog-to-digital converter (ADC). 

Schmitt trigger comparator is typically used.  

B. Neuron circuits  

As discussed in Section 4.1, when the crossbar array implements the weighted sum, analog current that is 

proportional to the weighted sum will be sink to the neuron node at the end of each column. The neuron node 

thus integrates this analog current and convert to spikes or digital outputs before sending to the nonlinear 

activation function, essentially serving as an analog-to-digital converter (ADC). Depending on the form of 

nonlinear activation function, different circuit design options could be available. For example, the simple 

step function could be implemented by a comparator, the rectifying linear function (ReLU) could be 

implemented by a shift register, and the sigmoid function could be implemented by a look-up-table.  

The conventional neuron node design generally employs the integrate-and-fire neuron model for the input 

stage, as shown in Figure 13 (b): the weighted sum current is integrated in the column capacitance (CBL) 

and once the membrane voltage (Vin) exceeds the threshold voltage (Vp), it triggers a Schmitt trigger 

comparator circuit to flip and generate the output spike (Vspike), while the spike resets the Vin by discharging 

through the Vreset path. Figure 14 (a) shows an example of the silicon CMOS neuron design using this 

principle [111]: Figure 14 (b) shows the simulated waveform of Vin and Vspike for different weighted sum 

current (6 µA vs. 1 µA). The number of output spike is designed to be proportional to the amplitude of the 

input weight sum current. Apparently, such silicon CMOS neuron node is complex and occupies much 

larger size than the column pitch of the crossbar array. This causes the column pitch matching problem 

(multiple columns have to share one neuron), thereby reducing the parallelism of the neural networks.  
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Figure 14 (a) One example of the CMOS integrate-and-fire neuron design for ADC input stage. The 

membrane voltage integrates and discharges after triggering the output spike. (b) Simulated waveform of 

the Vin and Vspike nodes, the output spike frequency is proportional to the input column current. Adapted 

from [111]. 

 

Therefore, it is attractive to design a compact neuron node by using a single device that still function as a 

Schmitt trigger comparator, as shown in Figure 15 (a). Phase transition in correlated oxides and/or 

chalcogenides could be exploited due to the volatile threshold switching I-V with hysteresis. The voltage 

on the phase transition device (if placed at the end of the column) will oscillate and emulate the Vin node in 

the silicon CMOS neuron, behaving as an oscillatory neuron. With a following inverter, the oscillation 

waveform could be restored to be rail-to-rail (from supply voltage to ground). It is also expected that the 

oscillation frequency is proportional to the weighted sum current. The circuit-level benchmark work [112] 

compared the design of silicon CMOS neuron and the oscillatory neuron. These two designs perform 

exactly the same function: converting the weighted sum current from the column into the number of spikes 

proportionally. The SPICE simulation shows that the oscillation neuron consumes ~0.033 pJ/spike, while 

the CMOS neuron consumes 0.168 pJ/spike, leading to a >5X improvement in energy on the neuron node. 

Oscillatory neuron also shows a >12.5X reduction of the area at the same technology node.  

 

Figure 15 (a) Using a phase transition device at the end of the column to perform the thresholding function, 

serving as an oscillatory neuron node. Adapted from [112]. (b) The threshold switching I-V characteristics 

of the NbO2 device based on meal-insulator-transition mechanism. Adapted from [113]. 
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The NbO2 based device that exhibits meal-insulator-transition has been proposed as such oscillatory neuron 

[114]. Figure 15 (b) shows the measured threshold switching I-V characteristics of the Pt/NbOx/Pt device 

structure [113]. A hysteresis exists: off-to-on switching threshold voltage (Vth) is about 1.9 V and on-to-off 

switching hold voltage (Vhold) is about 1.7 V. To make the neuron node oscillate in a proof-of-concept 

experiment, the NbOx device is connected with a load resistor (RL) as synapse to demonstrate the oscillatory 

neuron function, as show in Figure 16 (a). The resistance of the load resistor is chosen in between NbOx 

device’s ON state (RON) and OFF state (ROFF), and there is a parasitic capacitance at the neuron node. When 

the read voltage VR is applied, the membrane voltage on the capacitor will be charged because most of the 

voltage drop is on the NbOx device (ROFF>RL). Once the voltage exceeds Vth, the NbOx device switches to 

RON, and the capacitor starts discharging since the voltage drop on the NbOx device becomes small 

(RON<RL). Once the membrane voltage decreases below Vhold, the NbOx device switches to ROFF. This 

charging and discharging process repeats, thus the voltage of the neuron node oscillates between Vhold and 

Vth. Figure 16 (b), (c), (d) show the measured oscillation frequency with different RL, i.e. different synaptic 

weights. A voltage pulse is applied to Channel 1 (CH1) and the node voltage is monitored on Channel 2 

(CH2) using the oscilloscope. The oscillation frequency is 2 MHz, 0.7 MHz, and 0.4 MHz with the different 

load resistance 3.6 KΩ, 11.5 KΩ, and 16.1 KΩ, respectively. This suggests that the oscillation frequency 

is proportional to the equivalent resistance of the column (i.e. weighted sum results) if connecting the NbOx 

neuron to the crossbar array.  

 

Figure 16 (a) Circuit configuration of an oscillatory neuron node with Pt/NbOx/Pt device and a load resistor 

(RL) as synapse. Oscillation characteristics of with various RL: (b) RL=3.6 KΩ, frequency= 2 MHz. (c) 

RL=11.5 KΩ, frequency= 0.7 MHz. (b) RL=16.1 KΩ, frequency= 0.4 MHz. The oscillation frequency is 

proportional to the synaptic conductance. C1 is estimated to be 573 pF limited by the parasitic capacitance 

of the electrode pad. Adapted from [113]. 

 

5.2 ASU’s NeuroSim platform for benchmarking non-ideal device characteristics 

Despite of the recent progress in the array-level demonstration of crossbar array with synaptic devices as 

discussed in Section 4.2, great challenges exist in scaling up the array size to implement large-scale neural 

networks with high learning accuracy, primarily due to the non-ideal device effects. An ideal weight update 

behavior of analog synapse assumes a linear update of the conductance (or weight) with programming 

voltage pulses. As shown in Figure 4, however, representative synaptic devices reported in literature do not 

follow such ideal trajectory, exhibiting non-ideal properties, including: 1) precision (or number of levels) 

in the synaptic devices is limited as opposed to the floating-point in software; 2) weight update (conductance 

vs. # pulse) in today’s devices is nonlinear and asymmetric; 3) weight on/off ratio is finite as opposed to 

the infinity in software, as the off-state conductance is not perfectly zero in realistic devices; 4) device 

variation, including the spatial variation from device to device and the temporal variation from cycle to 

cycle, is remarkable; 5) at array-level, the IR drop along interconnect resistance distorts the weighted sum. 

These non-ideal behaviors commonly exist in today’s synaptic devices and are potentially harmful to the 

learning accuracy, as indicated by device-algorithm co-simulation studies [49, 51, 90, 115].  
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Recently, architectural simulator platforms (e.g.  PRIME [116], ISAAC [117] and Harmonica [118]) have 

been developed to support system-level design of neuromorphic accelerators, however they have limited 

considerations at the aforementioned non-ideal device properties (i.e., they only considered the weight 

precision and/or variation). On the other hand, MNSIM [119] is a circuit-level macro model of neuro-

inspired architecture, but the accuracy in this model is the output error of weighted sum (matrix-vector 

multiplication), which is just one step of the algorithm thus it lacks the run-time learning accuracy of the 

entire algorithm. In such context, it is crucial to develop a circuit-level macro model that can be integrated 

with the learning algorithm (neural network) to form a simulation platform that is hierarchically organized 

from the device level, the circuit level up to the algorithm level, where each level covers a wide variety of 

design options.  

Here we present a simulation platform “NeuroSim” to evaluate system-level metrics such as learning 

accuracy, area, latency and energy for online training with these realistic device properties. NeuroSim is a 

circuit-level macro model implemented in C++ that can be used to estimate the area, latency, dynamic 

energy and leakage power of on-chip accelerators with SRAM and eNVM arrays. The source code of 

NeuroSim is available for downloading at [120]. The hierarchy of NeuroSim consists of different levels of 

abstraction from the memory cell parameters and transistor technology parameters, to the gate-level sub-

circuit modules and then to the array architecture including the peripheral circuits. At the device level, 

important parameters in transistor models include device W/L, the operating and threshold voltage, gate 

and parasitic capacitance (per unit area) and NMOS/PMOS saturation/off current density, etc. Based on 

these parameters, the area and intrinsic RC model of standard logic gates (INV, NAND, NOR) can be 

calculated using analytical equations, thus the circuit-level performance metrics of each sub-circuit module 

can be estimated.  

 
Figure 17 (a) 2-layer MLP network topology with MNIST images as input. (b) Behavior model of weight 

update in analog synaptic device, with nonlinearity degree labeled from 6 to -6. (c) Device-to-device weight 

update variation. (d) Cycle-to-cycle weight update variation.  
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Figure 18 NeuroSim benchmark results of learning accuracy for 2-layer MLP with MNIST dataset. (a) 

Impact of weight precision, 6-bit is required for online training. (b) Impact of conductance on/off ratio. (c) 

Impact of read noise of weights. (d) Impact of weight update nonlinearity. Learning accuracy is very 

sensitive to nonlinearity. (e) Impact of device-to-device variation. (f) Impact of cycle-to-cycle variation.  

 

With NeuroSim circuit-level macro model, an integrated framework could be set-up with any neural 

network algorithm. As a case study, a 2-layer multilayer perceptron (MLP) with MNIST handwritten 

dataset is used to benchmark the online training or offline inference capability with synaptic devices. As 

shown in Figure 17 (a), the MLP network topology is 400(input layer)-100(hidden layer)-10(output layer). 

Such simple 2-layer MLP can achieve 96~97% in the software baseline. To model the eNVM synaptic 

properties, a behavior model of analog eNVM cells has been introduced with flexible parameters such as 

max/min conductance, read/write voltage and pulse width, number of multilevel (precision), and weight 

update nonlinearity degree (labeled from 6 to -6), as shown in Figure 17 (b). Here the device-to-device 

variation is defined as the nonlinearity baseline’s standard deviation (σ) respect to 1 label of the 6 labels, 

as shown in Figure 17 (c). For offline training, there is no nonlinearity issue as the cell conductance can be 

iteratively programmed to the desired value [80, 82]. Cycle-to-cycle variation is referred to as the variation 

in conductance change at every programming pulse. The cycle-to-cycle variation (σ) is expressed in terms 

of the percentage of entire weight range, as shown in Figure 17 (d).  

Figure 18 shows the sensitivity analysis of each device parameter’s effect on learning accuracy. Figure 18 

(a) shows that 6-bit weight is required for online learning, while 1 or 2-bit weight may be sufficient for 

offline inference (at least for MNIST dataset). Figure 18 (b) shows that limited on/off ratio (e.g. <20) will 

degrade the accuracy because the minimum weight that can be mapped to the device conductance is 

determined by the on/off ratio. Figure 18 (c) shows that the network has certain tolerance to read noise of 

the weights up to ~20%. Figure 18 (d) shows that the nonlinearity in the weight update (>1 label) 

significantly degrade the learning accuracy. Figure 18 (e) shows that the neural network is resilient to the 

device-to-device variation, except at high nonlinearity in the weight update. Figure 18 (f) shows that small 

variation (<2%) can alleviate the degradation of learning accuracy by high nonlinearity. The reason may be 

attributed to the random disturbance that aids convergence of the weights to an optimal weight pattern (i.e. 

to help the system jump out of local minima in the saturation regime of the nonlinear weight update). 

However, too large variation (>2%) overwhelms the deterministic update amount defined by the 

backpropagation thus is harmful to the learning accuracy. At array level, the IR drop problem is also 

considered. It is estimated that at a wire width of 40 nm, the on-state resistance (RON, which corresponds to 

the max conductance state) of eNVM should be higher than 10 kΩ and 500 kΩ to prevent accuracy drop in 

online learning and inference, respectively. Online learning can also tolerate more IR drop possibly because 

of the ability for the network to adapt itself to this spatial effect. 

Table 3 surveys the representative analog synaptic devices in the literature (as shown in Figure 5 above) 

with the extracted realistic device parameters such as precision (# of bits), weight update nonlinearity 

degree, on-state resistance (Ron), on/off ratio, programing pulse condition, and weight update variation, 

etc. Then the system-level metrics such as learning accuracy, area, latency and energy for online training 1 

million MNIST images are listed below. The benchmark results suggest that today’s synaptic devices have 

poor learning accuracy, primarily due to too large weight update nonlinearity (>1), and very limited on/off 

ratio (<10), etc. In addition, the training latency is too slow, i.e. 10E8 seconds are on the order of years, 

thus reducing the programming pulse width down to 100 ns or 10 ns is necessary to complete the training 

within one day or a few hours. Therefore, the targeted and ideal device specifications are listed in the last 

two columns of Table 3 as guidelines for future device engineering. 

Table 3 Extracted device parameters and system-level metrics of the representative analog synaptic devices 

in the literature (as shown in Figure 4). The simulation is done with NeuroSim platform for online training 

1 million MNIST images with a 2-layer MLP neural network.  
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Device type TaOx/TiO2 PCMO Ag:a-Si AlOx/HfO2 Target Ideal 

# of bits 6 5 6 5 6 6 

Nonlinearity (weight 

increase/decrease) 

1.13/0.72 3.25/5.82 1.13/2.65 3.0/1.0 1.0/1.0 0/0 

RON 5 MΩ 23 MΩ 26 MΩ 16.9 KΩ 200 KΩ 200 KΩ 

on/off ratio 2 6.84 12.5 4.43 50 50 

Weight increase pulse 3V/40ms -2V/1ms 3.2V/300µs 0.9V/100µs 2V/100ns 2V/10ns 

Weight decrease pulse -3V/10ms 2V/1ms -2.8V/300µs -1V/100µs 2V/100ns 2V/10ns 

Weight update 

variation (σ) 

<1% <1% 3.50% 5% 2% 0% 

Learning accuracy 9.80% 10.09% 76.79% 10.10% 88.66% 94.23% 

Area (µm^2) 1.07E+03 1.07E+03 1.07E+03 9.08E+03 1.33E+03 1.33E+03 

Latency (s) 2.21E+10 4.34E+08 2.67E+08 4.34E+07 8.82E+04 8.82E+03 

Energy (J) 4.36E+04 6.37E+01 6.42E+01 2.09E+03 1.30E+00 1.81E-01 

 

6. Outlook 

In the past few years, the neuro-inspired computing with eNVMs has seen remarkable progresses from the 

single device to array-level demonstrations. Nevertheless, design challenges arise from the device-level up 

to the architecture-level when the crossbar array size is scaled up to solve practical problems [110]: Firstly, 

the resistive devices today are mostly engineered towards the digital memory application, but the 

requirements of synaptic devices are quite different. For instance, synaptic devices need many more 

multilevel states (up to several hundreds of states) than digital memory’s 1 bit to 3 bits (8 levels) thereby 

requiring special materials and device engineering. Secondly, with the increase of the array size, issues 

associated with device yield, device variability, and array parasitics show up and may degrade the system 

performance, while the circuit or architectural mitigation techniques are yet to be developed. In addition to 

the array core, designs of the peripheral circuits are rarely explored. Furthermore, how to efficiently map 

various deep learning algorithms into the neuro-inspired architecture is an open question at the architecture-

level. EDA tools are necessary for partitioning the array size and the number of layers given the constraints 

of area, latency, power and learning accuracy. Lastly, the research in this field so far is mostly based on 

experimental work of single device or small-scale array with software neuron and projection of large-scale 

array performance by simulations only. A large-scale prototype demonstration with monolithic integration 

of eNVM devices on top of CMOS and peripheral neuron circuits is critical to make a breakthrough in this 

field, as one can actually measure the speed and energy efficiency.  

Given the challenges mentioned in Section 5.2 and the engineering targets in Table 3, there is still a long 

way to go for realizing online training on the eNVM devices. Therefore, the most promising application in 

the near term is the inference-only with offline training. In this case, today’s eNVM devices meet most of 

the requirements as it just needs a good on/off ratio (e.g. 100) to provide sufficient multilevel states (e.g. 

100) and a reasonable cycling endurance (e.g. 1000) for iterative programming, although the conductance 

tuning accuracy (by write-verify) and uniformity across the entire array needs further improvement. The 

data retention in the intermediate states needs further characterization. To enable the true crossbar array, 

threshold switching I-V selector that is compatible with the eNVM device properties is critical.  

In the next, we will discuss the customization of algorithms point of view to allow efficient hardware 

implementation. Most of the deep learning algorithms today generally rely on the availability of large 

datasets and the high-precision training to generate a huge set of model parameters, which are major 

limitations in mobile and dynamically varying applications. The high precision of data representation 

needed by deep learning algorithms, which directly impacts the computation cost and energy efficiency. 

Typically, deep learning models are trained in the GPU environment using 32-bit floating point, in order to 
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satisfy the precision required by backpropagation or other gradient-based approaches; computations with 

such high-precision data consumes significant amount of hardware resources and is impractical for eNVM 

devices. Recent research efforts from the algorithm’s perspective have made the attempt, including the 

network pruning  [121] and low-precision (fixed-point) training with stochastic rounding of last few bits 

[122]. The adoption of low-precision weight is most suitable for the feedforward inference stage of the 

CNN models, including LeNet5 [123], AlexNet [3] and VGG [124] in an order of the complexity. To the 

extreme case, the binary weight and neuron, namely Binary-Net [125], has been demonstrated for the 

classification of CIFAR dataset with negligible degradation of accuracy. A similar work that constraints 

the weights and neurons to be (+1, -1), namely XNOR-Net [126], has been demonstrated for the 

classification of ImageNet dataset with slight degradation of accuracy. In XNOR-Net, the matrix-vector 

multiplication essentially becomes the bitwise XNOR operation.  

Here, we use a feedforward neural network (applicable to MLP and CNN) as an example to illustrate the 

hybrid precision requirement for the weight propagation and weight update [127]. Figure 19 shows the flow 

of the feedforward inference (FF) and backward propagation (BP) for weight update. In the feedforward 

(FF) inference, the low precision (i.e. 1-bit binary) weights and 1-bit step function neuron could be used 

for the computation. In the backward propagation (BP), still the low precision weights could be used for 

calculating the error for weight update. But the weight update should be accumulated on a higher precision, 

e.g. 6-bit weights (for MNIST dataset). After the 6-bit weights are updated, they could be truncated to 1-

bit for the propagation again. We trained binary neural networks on the Theano platform [128]. A MLP 

with a structure of 784-512-512-512-10 and a CNN with 6 convolution layers and 3 fully-connected layers 

are trained for evaluations on MNIST and CIFAR-10 datasets, respectively. Table 4 presents the 

corresponding classification accuracy with floating point (FL) precision and binary precision for these two 

networks. For MLP on MNIST, the accuracy slightly drops from 99.00% to 98.77%; for CNN on CIFAR-

10, the accuracy slightly decreases from 89.98% to 88.47%. This means that as an interim solution before 

the analog eNVM devices become technologically mature, we could use available binary eNVM devices to 

prototype large-scale systems to demonstrate practical problems if such accuracy degradation is acceptable 

for the given application. With this principle, there are a few simulation works to explore the binary neural 

network with eNVMs [129, 130]. Recently, S. Yu, et al. [41] experimentally demonstrated a binary neural 

network on a16 Mb RRAM macro chip.  

 

Figure 19 The algorithm flow of the feedforward inference (FF) and backward propagation (BP) for weight 

update in a feedforward neural network. In the FF inference, the low precision (i.e. 1-bit binary) weights 

and 1-bit step function neuron could be used for the computation. In the backward propagation (BP), still 

the low precision weights could be used for calculating the error for weight update, but the weight update 

should be accumulated on a higher precision, e.g. 6-bit weights (for MNIST dataset). Adapted from [127]. 
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Table 4 The classification accuracy of MNIST dataset for a MLP and CIFAR-10 dataset for a CNN network. 

Only slight degradation in accuracy when aggressively truncated to be 1-bit.  

Although research recent efforts on network pruning and precision reduction show the promises for the 

propagation stage, high precision is still a must for the weight update stage due to the gradient descent in 

the error backpropagation or the decay of learning rate in the machine learning driven algorithms. On the 

other hand, the biologically-plausible algorithms may naturally tolerate the low precision and 

variations/noises in the eNVMs evening in the weight update stage. However, the biologically-plausible 

algorithms have not yet demonstrated a competitively high learning accuracy for solving practical problems. 

Therefore, the research community should fundamentally re-think the algorithm and hardware co-

optimization. Significant cross-layer research efforts are needed to develop new algorithms that can exploit 

the underlying unique device properties to realize a compact and energy-efficient mapping to the crossbar 

array architecture.  

In the past few years, hardware implementation of neuro-inspired computing has made substantial 

progresses as summarized in this review. This research also attracted a lot of interests in academic 

universities and industrial research institutions and companies, as reflected by the large-scale projects such 

as DARPA SyNAPSE, DARPA UPSIDE, NSF Expeditions in Computing, NSF/SRC E2CDA, 

SRC/DARPA JUMP in USA, and Human Brain Project (HBP) and NeuRAM3 in Europe, etc. The research 

on eNVM based synaptic devices, circuits and architectures is highly interdisciplinary in its nature, 

connecting the fields of materials engineering, nanotechnology, semiconductor device, VLSI design, EDA, 

computer architecture, machine learning, and computational neuroscience, etc. This review has presented 

state-of-the-art synaptic device properties, small-scale to medium-scale array integration, and preliminary 

exploration of device-architecture-algorithm co-design, with the hope of inspiring the research community 

for the future interdisciplinary collaborations on this emerging and exciting research topic. We anticipate 

the close interaction between these interdisciplinary fields would lead to a breakthrough in the large-scale 

demonstration of neuro-inspired computing system in the next decade.   
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