EE 220 W19 Leckwe 15  Rb#, 22 »

Revired couse woX weifkts 78 o -
Ml‘ffe‘/'"l | a’;’/;, 7 40/{&)& m?ﬁ;.mvm d : e : :
Miktern > o7, = Rena

Woﬁ ) H;m:ﬂ;a V‘em:i(‘:)
esentieHon Toinal RePort Goyien
Recent-mfics HTe - . £
= Youay comparisn of diFfefent Ahjreckores
Cravalld, pipohine ,--)
— AMabste cfrauiks & emevyy m)‘b’:’nj
= Muthiple-vhp Aesifns & Vibofe lewe] shisid
= Memyijrbrs
= Nmrawrﬁo a:mgw-h:»;f

Fig. 79 Original 20 x 20 pixels of black-and-white MNIST handwritten digits: (a) “3" and
() 4"
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Fig. 7.7 (a) Input stage for CNN architecture. (b) 2D matrix convolution. (¢) Implementation of ‘ ‘ ‘. ‘L F|~Sl o Off-state

convolution for multiple feature maps into a point array i by ion of 2D

kernel matrix into 1D column vector Fig. 7.11 (a) The microscopic top-view image of the fabricated 12 x 12 cross-point array. The
probe card tips have touched on the pads. (b) The implementation of the Prewitt horizontal kernel
(/) by programming the cells of C; and C columns into on-state and off-state and the Prewitt
wvertical kemnel (f,) by programming the cells of Cs and Cy columns into on-state and off-state
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Fig. 114 In forwand evaluation of & multilayer perceptron, each layer's neurons drive the next
layer through weights w, and a nonlinarity 1), Input neurons are driven by input (for instance,
pixels from successive MNIST images (cropped 10 22x24)); the ten output neurons classify which
digit was presented (Adapted from Burr et al. [1])
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Fig, 13,10 Funcrional schematic of FONN, The extracellular signal is fed through 32 frequency
and-pass filters which are connecied to the FCNN. Synapses are hased on HIO;-based OxRAM
devices. Outpul neurons become selective 1o different input spikes shapes (Adapled from Wemer
etal. [23))
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Figure 19 The algorithm flow of the feedforwardsinference (k) and backward propagation (BP) for weight
update in a feedforward neural network. In the FF inference, lm. low precision || e. 1-bit binary) weights
and 1-bit step function neuron could be used for the In the back (BP), still
the low precision weights could be used for calculating the error for weight npd.-nr. hul the weight update

should be accumulated on a higher precision. e.g. 6-bit weights (for MNIST dataset). Adapted from [127).
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500 x 661 PCM = (2 POM/synapse * 164835 synapses) + 730 unused PCM

0 1 2

Fig. 11.5 Training accuracy for a three-layer perceptron of 164,885 hardware synapses [ 1], with
all weight operations taking place on a 500x661 amay of mushroom-cell PCM devices. Also
shown is 2 maiched computer simulation of this ANN, using parameters extracted from the
experiment (Adapied from Burr et al. [1])
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Fig. 9.12 (a) Hysteresis 1-V characteristics of a MIT device. (b) Circuit configuration of an

oscillation neuron node with MIT device and RRAM synaptic weight. (¢) SPICE simulation

waveform of the oscillation neuron

Spike timing At (ms)

Fig. 29 Synaptic plasiicity. (a) Relative timings of neuronal spikes from the presynaptic ncuron
and the postsynaptic neurnn determine the weight change in synapse. (b) Synaptic weight change
is plotied as a function of relative timing of pre- and post spikes (Reprinicd with permission from

Bi and Poo [82]) (¢) Diverse forms of STDP (Repris ith permission from Shouval et al. (76])
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Fig. L1 A revolutional shift of the computing paradigm from the computation centric (von
Neumann architecture) 1o the data-centric (neuro-inspired architecture)

Table 1.1 Categories of different design options for hardware implementation of neuro-inspired
computing. Representative porotypes are shown
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Fig. 3. “Ten different motivations for developing neuromorphic systems, and over time, the percentage of the papers in the lierature thut have indicated that

motivasion a5 one of the primary reasns they have pursued the development of neuromorphic systems.

Off-the-shell
technologies CMOS ASIC Emerging resistive synaptic devices
Digital GPUs [9] TPU [13] Analog synapses: UCSB's 12 x 12
representation | FPGAs [10] CNN «crossbar array [18]
1, 12] Binary synapses: ASU/Tsinghua’s
16 Mb RRAM macro [19]
Spike SpiNNaker [14] | Analog neuron: IBM’s 256 x 256 PCM array with
representation HICANN [15] STDP neuron circuits [20]
Digital neuron:
TrueNorth [16]
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Fig. 5. A qualitative comparison of neuron models in terms of biological
inspiration and complexity of the neuron model.




lonic Channels in Hodgkin-Huxley Model
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Fig. 6. Different netsork topologies that might b desired for nessomorphic systems. Determiniag the level of connectivity that is equired for & neuromorphic
implermentation and then finding the appropriate hardware that can accommoxtute thit level of connectivity is often 4 ponrivial exercise

Fig. 7. A breakdown of network models in néromorphic implementations,
grouped by overall type and sized to reflect the number of associates papers.

Fig. 9. An overview of on-chip training/learning algorithms. The size of the
box corresponds to the number of papers in that category.

Analog Circuitry/

Digital Communication

Analog Circuitry/
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Fig. 10. An overview of hardware implementations in neuromorphic com-
puting. These implementations are relatively basic hardware implementations
and do not contain the more unusual device components discussed in Section
V-B.
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Fig. 11. Device-level components and their relative popularity in neuromor-
pl'nc systems. The size of the boxes corresponds to the number of works
d that have included those
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Fig. 14. Examples from different image data sets (MNIST [2618]. CIFARI0
[2619], and SVHN [2620]) to which neuromorphic systems have been applied
for classification purposes.
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Abstract

volatile power-hungry electronic components, and modest battery storage. Here, we report a novel
poly(ethylene alycol dimethacrylate) (PEGDMA)-textile memristive nonvolatile logic-in-memory
circuit, enabling normally off that can those To form the metal
electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al)
using a solution dip coating method, and the pEGDMA was conformally applied using an initiated
chemical vapor deposition process. The intersection of two AI/pEGDMA coated yarns becomes a
unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar
array, was interwoven using a grid ofAupE(Md yarns. The former
were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We
experimentally demonstrated for the first time that the basic Boolean functions, including a half
adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with
the ETM crossbar array on a fabric substrate. This research may represent a breakthrough

for practical and smart
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Figure 3, Schematic view of the fabricated device with logic circuits and electrical
measured data of the NOR and NOT gate on fabric.
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Fig. 6.1 CMOL circuits. (a) A cartoon of a hybrid CMOS/memristor integrated circuit. (b) The
example of three CMOS cells (neurons) via corresponding crossbar

(dendrites and axons) and cross-point devices (synapses), which are located above
CMOS layer

¥ig. 12 An analogy
between a biologic synapse
and the resistive synaptic
device

Syriéptic device

Biology synapse

Table 1.2 Summary of the

Performance metrics | Desired targets

desirable -

5 o Device dimension <10 nm

metrics for synaptic devices
Multilevel states” number >100°
Energy i <101 iing pulse
Dynamic range - 100"
Retention >10 years®
Endurance >10” updates”

Note: *These numbers are application dependent

Linearity in Weight Update The linearity in weight update refers to the linearity of
the curve between the device conductance and the number of identical program-
ming pulses. Ideally, this should be a linear relationship for the direct mapping of
the weights in the algorithms to the conductance in the devices. However, the
resistive synaptic devices generally have the nonlinearity in weight update (see
Fig. 1.3). The trajectory of the long-term-potentiation (L'TP) process that increases
the conductance differs from that of the long-term-depression (LTD) process that
decreases the conductance. The weight tends to saturate at the end of LTP or LTD
p This inearity is undesired because the change of the weight (AW)
depends on the current weight (W), or in other words, the weight update has a
history dependence. Recent results have shown that this nonlinearity has caused the

learning accuracy loss in the neural networks [41, 42].




Programming Energy Consumption The estimated energy consumption per syn-
aptic event is around 1 ~ 10 f] in biological synapses. Most RRAM/CBRAM
devices show a programming energy around 100 fI ~ 10 pJ, while most PCM
devices may have even higher programming energy 10 ~ 100 pJ. The fundamental
challenge is that it is much more difficult (thus paying more energy) to move the
ions/defects in solid-state devices than moving calcium ions in the liquid environ-
ment in biological synapses. A back-of-envelope calculation is given as follows. In
biological synapses, the spike voltage is ~10 mV, the ionic current ~1 nA, and the
spike period ~1 ms; therefore, the energy is about 10 fJ. In resistive synaptic
devices, the typical programming voltage is ~1 V, and the programming current
is typically >pA; although the prc ing speed can be accel d less than the
real time to be <ps, still the energy is on the order of pl. Further device engineering
is thus needed to reduce the energy consumption.

Retention and Endurance During the online training, the weights are frequently
updated, and the data retention requirement can be relaxed. When the training is
complete, the resistive synaptic should behave as a long-term memory with a data
retention in the order of 10 years at elevated temperature similarly as the
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Fig. 1.3 The measured nonlinearity in the weight update reported from the literature: (a) TaO,/
TiO; device [39], (b) PCMO device [36], and (c) Agia-Si device [33]

requirement of NVM. The number of endurance is much application dependent,
relying on how many weight updates are required in the training processes. For a
relatively simple task (i.e.. the MNIST handwritten digit recognition [43]), 60,000
training images with 50 training epochs (to repeated) give a maximum weight
update possibility to be 3 x 10° updates. Actually not every synapse is updated in
the training; thus, an endurance ~10" is sufficient for training MNIST dataset
[19]. However, considering more challenging tasks (i.e., ImageNet challenge
[44]), much more endurance may be required.

Uniformity and Variabiliry Poor uniformity or significant variability in emerging
NVMs is a major barrier for digital memory applications. In contrast, the neural
networks promise robustness against device variations. The device variations could
partially be tolerated by two mechanisms: the massive (thus maybe redundant)
connections between neuron nodes by synaptic arrays and the iterative weight
update process during the training. The degree of variations that can be tolerated
at the system level strongly depends on the network architecture and the accuracy
required by the target application. The device-algorithm co-simulations have shown
the reasonable robustness against device variations in different neural networks
[42, 45].
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Fig. 1121 Forward propagation operation in a decp neural network. The multiply-sccumulate
operation occurs on the crossbar array. Newron circuitry must handie the nonlincar squashing
function (Adapted from Fumarola et al. [9])
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Fig. 6.9 (a) The first four steps of crossbar update. The sign of the gradient matrix (on the feft),
which is obtained affcr one epoch of training, specilfies the dircetion of the state update for cach
device in crossbar cireuit, i.¢., whether 0 incrementally set or reset the device. The update is
performed using the V/2 scheme with appropriate chosen voltages (on the right), The voltage
shown in redigreen) and blue(orange) are for the first and second steps, respectively. (b) Flow
chart of the training algorithm. Gray boxes shaw the steps implemented in hardware, white all
remaining steps were emulated in software
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Fig. 1215 (w) Sub-circuit module of a synaptic device coll (W wire width). The cell consists of a
resistive synap The resistive cell has c: (C) in parallel with the cell
resistor (R). There are also wire resistors () and capacitors (Cw) for top and bottom intercon
nect. Sub-circuit is duplicated for the cntire army fo perform SPICE simulation. (b) Learning
uracy with different wire widths. Smaller wire widih will degrade the leaming accuracy due to
the IR drop along the interconnests

Fig 611 () The memsistive MLP fabricated on 1o prinied cireuit boards, one ncluding two
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level diagram of the implemenied MLP. Each et of weights is implemened with one crosshar
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Figure 10 Perceptron classifier demonstration: (a) integrated 12%12 crossbar with an ALOYTiO:
menristor at each eross-point (i) a typical [V curve of a formed memristor: histograms of forming voltages
(¢) and effective switching thresholds voltages (d) for set and reset wansitions: (¢} perceptron
implementation using 2 10x6 fragment of the menristive crossbar; (f) example of the classification
operation for a specific input patier; and (g) the convergence of network outputs, in the process of training,
1o the perfect (zero-error) set, for 6 different initial states. The elassification was considered successful
when the output signal corresponding to the correet class of the applied pattern was larger than all other
outputs, The insets in panels (b) and (g) show device's cross-section and the used input pattern set,
correspondingly. On panel (d). the positive / negative switching threshold voliages were defined as the
smallest amplitudes of S00-ps voltage pulses that caused by more than 2 k€D in memristors
pre-set to their high / low resistive states. Adapted from [37, 101].
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Fig. 3.13 Each sample exhibited different (a) onfoff ratio and (b) asymmetry ratio

S bsonanddnn W

vt vrage V)
Figure 12 NOR flash memory circuits redesigned for neuro-inspired computing: (a) Layout of a 55-nm
vector-matrix multiplication circuit with a 1010+2) cell array and auxiliary pass-gates and (b, <) ils
experimental test resuls, for (1) cell iuning (measured vs. target weights) and (¢) 4-input vector-hy-vector
multiplication. The 0 C_currents_sampled from sine functions with different
frequencies. 2-layer M T80-nm_industrial-grade floating-gate ) high-level
architecture (with the weight tuning circuitry for the 2* arcay not shown for clarity). and (b) histograms of
autput voltages for all 10,000 MNIST test pattemns. The elassification of ane pattem takes time below I ps
time and energy below 20 nJ. Adapted from [107, 108].
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