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Slide 3.8

. More generically, we can
Circuits with Reduced Swing compute the energy it

takes to charge a i-
'\/7_ tance from a voltage V),
. 0 a voltage Vi Using
»-V—(V'Vﬁ) similar math, we derive

that this requires from

GO
/jél—‘

T Ic o ST the supply an amount of
energy equal 0
sRJIM = = || S e e

tion will come in handy

=cav 1z )}v‘.ﬂd‘znﬁj{}v e ‘/C“V"ll:i for a number of special
:C(‘/_Wn') 2, s s circuits. One example is
the NMOS pass-transistor

P ¥ o Ty pein. 1t is well-known

at the maximum voltage
at the end of such as chain is one threshold voltage below the supply [Rabaey03]. Using the
afore-derived equation, we find that the energy dissipation in this case equals
CVpp(Vop—Vru). and is proportional to the swing at the output. In general, reducing the
swing in a digital network results in a lincar reduction in energy consumption.

[Res- |]
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us back to the
e of the CMOS
inverter. To translate the
derived energy per opera-
tion into power. it must be
multiplied with the
ower-consumin

= CLVpo fPo_sy Hons fo. The 7
resulting  metric

[¥Bimamic Power Consumption

Power = Energy pertransition x Transition rate

= G Voo

= 2
= CautcnoaVoo’f (= Joules/sec). This trans-
lation leads right away to
= Power dissipation is data dependent — depends one of the hardest problems
on the switching probability, Po_.; in power analysis and opti-
= Switched capacitance Cyyicneq= P, ,,Cr= o0, mization: it requires knowl-
(u is called the switching activity factor) edge of the “activity™ of the

circuit. Consider a circuit
lock frequency /: The probability that a node will make a 0-to-1 transition at a given clock
en by af, where 0 < < 1 is the activity factor at that node. As we discuss in the following
a function of the circuit topology and the activity of the input signals. The accuracy of
mation depends largely upon how well the activity is known — which is most often not very

(&)




nction

Example: Static two-input NOR gate

Assume signal probabilities

A B | Out Pasi=

0 0 1 Poy=1/2

L] 1 £ O | Thentansition probabllty
10 1la Poat =P X Poer

1 1 0

=8/4x1/4=316
If inputs switch every cycle

ayor=316

NAND gate yields similar result

function of the I-probabilities of the inputs A and B: axor =

Slide 3.13

Let us, for instance, derive
the activity of a two-input
NOR gate (which defines
the topology of the crcuit).
Assume that each input has
an equal probability of being
a 1 or a0, and that the prob-
ability of a transition at a
clock tick is 50-50 as well,
ensuringan even distribution
between states. With the aid
of the truth table we derive
that the probability of a
0—1 transition (or the activ-
ity) equals 3/16. More gener-
ally, the activity at the output
node can be expressed as a

Paps(l —paps).

CkJ

[ipacror ogic Function

Example: Static two-input XOR gate

Assume signal probabilities

A | B | ou Pay =12

o ° 1 Pg =112

g 1 g Then transition probability
LI ] P = Pausn  Poct

3 A o =12 x12=14

If inputs switch every cycle
Pyy= 114
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A similar analysis can be
performed for an XOR
gate. The observed activity
is a bit higher (1/4).

LR, )

-!MMM Probabilities for Basic Gates

As a function of the input probabilities

Pot

AND (1=PaPs)PAPs

OR | (1=pa)(1-pel(1=(1-pa)(1-ps)
XOR_|(1- (Ps+Ps —2PsPa))(Ps + Ps—2 PaPs)|

Activity for static CMOS gates
a=pypy

Slide 3.15
These results can be gener-
alized for all basic gates.

[R:)

I REH a5 & Funotion of Topology

XOR versus NAND/NOR

~——_NANDINOR
S i
o= (29 V2nn =14 MiAm ey
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The topology of the logic
network has a  major
impact on the activity.
This is nicely illust
comparing the acl
NAND (NOR)
gates as a function of fan-
in. The output-transition
probability of a NAND
gate goes asymptotically
to zero. The probability of
the output being a 0 is
indeed becoming smaller
with increasing fan-in. An
example of such a network
is a memory-address deco-

der. On the other hand, the activity of an XOR network is independent of fan-in. This does not
bode well for the power dissipation of modules such as large en(de)cryption and coding functions,

which primarily consist of XORs.

)

IREISSHBIENE 3 domino |4ic)

Voo
Energy dissipated
- when effective output is zero!
Pre-charge
OF Py =Py

s larger than pop,!

E.g.. o_y(NAND) = 1/2¥: p,_, (NOR) = (2N —1)/2%

Activity in dynamic circuits hence aways higher than in static.

But ... capacitance most often smaller.

activity and capacitance,
the latter being smaller in
dynamic logic. In general
though, the higher activity
outweighs the capacitance
gain,

Static:
Activity is doubled
Dynami

Transition
probability is 1!

L

Hence power always increases.
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Another interesting logic
family is differential logic,
which may seem attractive
for very low-voltage
designs due to its increased
signal-to-noise ratio. Dif-
ferential implementations
come unfortunately with
an inherent disadvantage

from a power perspective:

cimncerhighen the activity
is higher as well (for both
static and dynamic imple-

mentations). The only

positive argument is that differential implementation reduces the number of gates needed for a
given function, and thus reduces the length of the critical path.




momplex Logic

= Simple idea: start from inputs and propagate signal
probabilifies fo outputs
Py

= But:
— Reconvergent fan-out
~ Feedback and temporal/spatial correlations

static power analysis seem
favorable at a first glance,
Consider, for instance, the
network shown on the slide,
and assume that the 1- and
O-probabilities of the pri-
mary input signak are
known. Using the basic
earlier, the output signal
probabilities can be com-
puted for the first layer of
gates starting from the pri-
mary inputs. This process is
then repeated until the pri-
mary outputs are reached
This process seems fairly

straightforward indeed. However, there is a catch. For the basic gate equations to be valid, the mputs

must_be

tistically independent. In probability théory, 1o sy thal two evenls arc midependent
oceurrence of one event makes it neither more nor less probable that the
other occurs. While this assumption is in general true for the network of the slide (assuming obviously

that all the primary input signals are independent), it unfortunately rarely holds in actual circuits,
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: an-out (Spatial Correlation) Eseif the priscisy l0putt fo

a logic network are indepen-
Inputs to gates can be interdependent (comelated) dent, the signals may become

correlated or “colored”, while

r x A omereree they propagate through the
- — = aii ) s logic network. This i best
. '[[2 ——

illustrated  with a  simple

no reconvergence reconvergent cwrn_pl::. which showcases
Pz=1-{(1-p,)Ps Pz=1-(1-Pps? the impact of a network

i/ NO! property called reconvergent
5 oottty ok 2 =7 2, Jfan-out. In the rightmost cir-
Must use gonditional probabilities cuit, the inputs to the NAND
sz‘j;fW gate Z are not independent,

rob: ihat X=1 given that A=1 but are both fmucmps of the

Becomes complex and intractable real fast same input signal A. To com-

pute the output probabilities
of Z, the expression derived
earlier for a NAND gate is no longer applicable, and conditional probabilities need to be used. Conditional
probability is the probability of some event 4, given the occurrence of some other event B, Conditional
probability is expressed as (4| B), and is read as “the probability of A, given 5. More specifically, one can
derive that p(A|B) = p(A N B)/p(B), assuming that p(B)s 0.

While propagating these through the network is theoretically possible,
you may guess that the complexity of doing so for complex networks rapidly becomes unmanage-
able — and that indeed is the case.

[ femporal Correlations

Feedback Temporal correlation in
input streams
X
1 Logic 01010101010101.
0000000111111

. Both streams have same P=1
X is a function of itself but different switching
— corelated in time statistics

s Activity estimation the hardsst part of power analysis
— 3
= Typically done through simulation with actual input
vectors (see [ater slides]

as well may show temporal dependence. For example, in a di
is dependent upon the previous values.
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The story gets complicated
even further by the occur-
rence of remporal correla-
tions. A signal shows tem-
poral correlation if a data
value in the signal stream is
dependent upon previous
values in the stream. Tem-
poral correlations are the
norm in sequential net-
works, as any signal in the
network is typically a func-
tion of its previous values
owing to the existence of
feedback network. In addi-
tion, primary input signals

zed speech signal any sample value

All these arguments help to illustrate that static activity analysis is a very hard problem indeed,
and actually all but impessible. Hence, power analysis tools either rely on simulations of actual

signal traces to derive the signal p ilities or make simplify

— for instance, it is

assumed that the input signals are independent and purely random. This is discussed in more detail
in Chapter 12. In the following chapters, we will most often assume that activity of a module in its
typical operation mode can be characterized by an independent parameter .
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